Darker than dark: Searching for hidden particles with tiny couplings

Felix Kahlhoefer PRISMA Colloquium JGU Mainz 18 December 2019

Including results from arXiv:1809.04849 with Saniya Heeba and Patrick Stöcker arXiv:1908.09834 with Saniya Heeba arXiv:1910.02091 with Matthias Geilhufe and Martin Winkler

Outline

- The dark matter puzzle
- Dark matter in the early Universe
 - Weakly Interacting Massive Particles (WIMPs)
 - Feebly Interacting Massive Particles (FIMPs)
- Finding FIMPs
 - Part 1: Decaying dark matter
 - Part 2: New force carriers
 - Part 3: New detector concepts

How to find missing (dark) matter

- Map out the distribution of visible matter
- Determine its gravitational potential
- Calculate the **motion of visible objects** in this potential
- Compare to observations
- First done in 1933 by Fritz Zwicky
 - Apply the virial theorem to the Coma cluster
 - Compare gravitational potential and velocity distribution

Rotverschiebung extragalaktischer Nebel.

125

Um, wie beobachtet, einen mittleren Dopplereffekt von 1000 km/sek oder mehr zu erhalten, müsste also die mittlere Dichte im Comasystem mindestens 400 mal grösser sein als die auf Grund von Beobachtungen an leuchtender Materie abgeleitete¹). Falls sich dies bewahrheiten sollte, würde sich also das überraschende Resultat ergeben, dass dunkle Materie in sehr viel grösserer Dichte vorhanden ist als leuchtende Materie.

Galaxy scales: Rotation curves

- In the 1970s Vera Rubin applied a similar approach to galaxies
 - Measure the rotational velocities of stars and gas at different distances from the centre
 - Infer the gravitational potential needed to maintain these velocities

- Beyond the visible disk we expect velocities to decrease
- But velocities stay constant up to very large distances
- An additional contribution from invisible matter is necessary to keep these objects bound

Gravitational lensing & the Bullet Cluster

- To search for dark matter on even larger scales, we can make use of gravitational lensing
- Distortions of the shape of far-away objects allow to infer amount of matter along the way
- We can **map out the distribution** of dark matter!

Gravitational lensing & the Bullet Cluster

- To search for dark matter on even larger scales, we can make use of gravitational lensing
- Distortions of the shape of far-away objects allow to infer amount of matter along the way
- We can **map out the distribution** of dark matter!

- The Bullet Cluster is a collision of two galaxy clusters
- The dominant contribution to gravitational lensing does not coincide with the light emission
- Explanation: separation of dark and visible matter due to the collision!

Darker than dark: Searching for hidden particles with tiny couplings Felix Kahlhoefer | 18 December 2019

Cosmological scales: Structure formation

- We can even infer the presence of dark matter in the **very early Universe**
- Dark matter is not affected by the high density of energetic photons after the Big Bang
 - Gravitational collapse for dark matter is faster than for visible matter
 - Dark matter forms structures much earlier than visible matter
- Dark matter is necessary to explain observed amounts of structure in the present Universe

Cosmological scales: Structure formation

- We can even infer the presence of dark matter in the **very early Universe**
- Dark matter is not affected by the high density of energetic photons after the Big Bang
 - Gravitational collapse for dark matter is faster than for visible matter
 - Dark matter forms structures much earlier than visible matter
- Dark matter is necessary to explain observed amounts of structure in the present Universe

- Cosmological observations enable us to determine the dark matter contribution to the total energy density
 - Planck: **Ω***h*² = 0.1199 ± 0.0027

Impressive precision!

Darker than dark: Searching for hidden particles with tiny couplings Felix Kahlhoefer | 18 December 2019

8

Emmy

DFG

Noether-

Programm

What is dark matter?

- Astrophysical observations clearly confirm the existence of dark matter (DM) in the Universe, but they give almost no indications concerning its nature
- No known particle (within the Standard Model of particle physics) has the required properties to be DM
- Need to postulate the existence of a new particle with unknown properties
- The only thing we know about it is its abundance in the Universe:

 $\Omega h^2 = 0.1199 \pm 0.0027$

• Any model of dark matter must provide a mechanism to **explain this number**

by Saniya Heeba

Interaction rates in the early Universe

• To determine which **processes are important** in the early Universe, we calculate

 $\Gamma \equiv \left\langle \sigma v \right\rangle n^{\rm eq}$

- with σ: cross section for the process of interest
 v: velocity of particles in the initial state
 n^{eq}: number density of particles in the initial state
 ↔: thermal average
- We then compare Γ to the **Hubble expansion rate** $H = a^1 da/dt$
 - Γ(T) > H(T): Interactions are fast
 - Γ(T) < H(T): Interactions are slow

Emmy

DEG

Noether-

Programm

Thermal decoupling: The standard picture

- High temperatures (T >> m_{DM})
 - DM **annihilation and production** processes are in equilibrium

Universe expands and cools down

- Low temperatures (T << m_{DM})
 - DM particles decouple from equilibrium

Darker than dark: Searching for hidden particles with tiny couplings Felix Kahlhoefer | 18 December 2019

Thermal decoupling: The standard picture

Qualitative solution: Stronger interactions ↔ smaller abundance

Weakly Interacting Massive Particles (WIMPs)

- Particles that obtain their relic abundance through thermal freeze-out are called WIMPs
- If these particles have similar interactions as known particles but are slightly heavier, thermal freeze-out leads to the correct relic density
- We can **hope to observe WIMPs** in the laboratory!

energy at colliders

Where Is My Particle?

- Parameter space for WIMPs is getting tight!
- Most WIMP models are still viable, but the non-observation of dark matter signals mounts substantial pressure on the WIMP idea
- Well-motivated to question underlying assumptions and consider alternative dark matter models

by Saniya Heeba

The freeze-in mechanism

 Assume that initial dark matter number density is negligible and that interactions between DM and the SM are extremely weak

The freeze-in mechanism

 Assume that initial dark matter number density is negligible and that interactions between DM and the SM are extremely weak

Qualitative solution: Stronger interactions ↔ larger abundance

Feebly Interacting Massive Particles (FIMPs)

- Particles that obtain their relic abundance via the **freeze-in mechanism** are called FIMPs
- Write interaction rate as Γ = λ² T (with some effective coupling λ)
- The relic density requirement translates to to λ ~ 10⁻¹²
- Such tiny couplings are impossible to probe with WIMP searches...

Feebly Interacting Massive Particles (FIMPs)

- Particles that obtain their relic abundance via the **freeze-in mechanism** are called FIMPs
- Write interaction rate as Γ = λ² T (with some effective coupling λ)
- The relic density requirement translates to to λ ~ 10⁻¹²
- Such tiny couplings are impossible to probe with WIMP searches...

...but they can be discovered with **dedicated search strategies**

Part 1: Decaying dark matter

- Challenge the assumption that DM particles are perfectly stable
- Gravitational interactions only tell us that DM survives to the present day, i.e. the particles have a lifetime greater than the age of the Universe (~1017 s)

 10^{30}

- 10^{29} However, if DM particles decay into SM particles (e.g. photons), Integral τ [s] 10²⁸ observational constraints are M31 much tighter and require **NuSTAR** 10^{27} $\tau > 10^{28}$ s (for keV-scale DM) 1026 10 50 100 5 5001000 m_s [keV]
- For a DM particle to have such a long lifetime, it must have tiny couplings to SM particles → connection to freeze-in mechanism

Probing freeze-in with indirect detection

If the same interaction is responsible for DM production and decay, we can probe the freeze-in mechanism by looking for the products of DM decay

Example: Higgs portal DM

- The Higgs boson h, which arises from the spontaneous breaking of electroweak symmetry, is the only known elementary particle with spin 0
- What if the DM particle also has spin 0? What if it also arises from the spontaneous breaking of a new symmetry?

 If both particles have the same quantum numbers, they can mix with each other, such that mass eigenstates (*h* and *s*) are different from interaction eigenstates:

$$\begin{pmatrix} h_{\rm SM} \\ h_s \end{pmatrix} = \begin{pmatrix} \cos\theta & \sin\theta \\ -\sin\theta & \cos\theta \end{pmatrix} \begin{pmatrix} h \\ s \end{pmatrix}$$

Darker than dark: Searching for hidden particles with tiny couplings Felix Kahlhoefer | 18 December 2019

Consequences of Higgs mixing

• **Consequence 1:** Higgs decays produce DM particles

- For *T* ~ *m_h* the early Universe is full of Higgs bosons
- Mixing of θ ~ 10⁻¹² sufficient to match observed relic abundance

- **Consequence 2:** DM particles inherit Higgs decay modes
- Phenomenologically most interesting: decay into two photons

Intriguing coincidences

- For DM masses in the keV range, searches for DM decay products are sensitive to mixing angles θ ~ 10⁻¹², as predicted from cosmological measurements
- Moreover, for several years a number of observations have provided hints for an unexplained x-ray line at 3.5 keV
- If not due to astrophysics, this could be evidence for decays of a spin-0 DM particle with m_s ~ 7 keV

Darker than dark: Searching for hidden particles with tiny couplings Felix Kahlhoefer | 18 December 2019

Part 2: New force carriers

- Challenge the assumption that DM particles couple directly to the SM
- Given the complexity of the visible sector (making up only 5% of the Universe), it is hardly plausible that the dark sector should be much simpler
- In addition to new stable particles, there may also be **new force carriers**

 Simplest example: a dark fermion x coupled to a dark photon A' (like QED but with much smaller couplings)

Early Universe:

- For 2 m_{DM} > m_A DM particles can only be produced from virtual dark photons (A'*)
- Cross section proportional to $g'^4/m_{\rm DM}^2$
- Observed relic abundance requires g' ~ 10-6

Early Universe:

- For $m_{DM} > m_{A'}$ DM particles can only be produced from virtual dark photons (A'*)
- Cross section proportional to $g'^4/m_{\rm DM}^2$
- Observed relic abundance requires g' ~ 10-6

Laboratory:

- In the laboratory one can produce real (i.e. on-shell) dark photons by shooting charged particles at a fixed target \rightarrow dark Bremsstrahlung
- Cross section proportional to g^2/m_{A^2}

Darker than dark: Searching for hidden particles with tiny couplings Felix Kahlhoefer | 18 December 2019

Early Universe:

Laboratory:

Felix Kahlhoefer | 18 December 2019

Particle Physics

- Dark photons are so weakly coupled that they easily travel through the target and absorber
- For $m_{A'} > 2 m_e$ they are however **unstable** against the decay into two electrons
- Example: $m_{A'} \sim 10 \text{ MeV}$ and $g' \sim 10^{-6} \rightarrow \text{decay length} \sim 1 \text{ m}$
- We can search for dark photon decays in a **decay volume** behind the absorber

Results

Results

Strong constraints, but also plenty of unexplored parameter space!

30 En Pr

Darker than dark: Searching for hidden particles with tiny couplings Felix Kahlhoefer | 18 December 2019

Projections

Many plans to improve sensitivity with fixed-target experiments and e⁺e⁻ colliders!

Darker than dark: Searching for hidden particles with tiny couplings Felix Kahlhoefer | 18 December 2019

Part 3: New detector concepts

- Challenge the existing design of dark matter detectors and **explore new approaches**
- Direct detection experiments looking for the scattering of GeV-scale WIMPs typically have an energy threshold of order keV
 - DM particles in the Milky Way halo have $v \sim 10^{-3}$ and therefore $E_{\rm kin} \sim 10^{-6} m_{\rm DM}$
- When scattering on a heavy nucleus, only a fraction of this energy can be deposited
- Conventional direct detection experiments are **insensitive to keV-scale DM**
- Solution: Search for **DM-electron scattering** in crystals with **small band gap**

Dirac materials

- Materials in which elementary excitations can be described by **Dirac equation**
- Energy-momentum relation: $E^\pm_{f k}=\pm\sqrt{v_{
 m F}^2\,{f k}^2+\Delta^2}$
 - k: lattice momentum
 - v_F: Fermi velocity (replacing speed of light)
 - 2Δ: Band gap (replacing rest mass)
- For k >> Δ dispersion relation becomes linear → electrons behave like free relativistic fermions
- **Crucial advantage:** ∆ can be as small as 10 meV

Example: ZrTe₅

• Band structure calculated with density functional theory + structural optimisation

	V _{Fx}	V _{Fy}	V _{Fz}	Δ [meV]
Theory	1.1e-3	9.1e-4	4.4e-4	15.6
Experiment	1.3e-3	1.6e-3	6.5e-4	11.75

Identifying a dark matter signal

- **Problem:** background from thermal excitations of electrons
- Need to look for **characteristic properties** of DM signal
- Crucial observation: DM flux is **not isotropic** in the laboratory frame ("WIMP wind")

Directional detection from anisotropies

• Dirac materials can have significant anisotropies!

Sensitivity estimates

Conclusions

- We have convincing evidence for the existence of dark matter, but no experimental information revealing its nature
- The **non-observation of evidence for WIMPs** suggests that dark matter particles may have never been in thermal equilibrium in the early Universe (so-called **FIMPs**)
- In spite of their **tiny couplings**, FIMPs can be probed in a number of different ways
 - If the same interaction is responsible for dark matter production and decay, we can connect the relic abundance to observable x-ray signals
 - If a new force carrier (e.g. a dark photon) is responsible for dark matter production, we can search for it at accelerator experiments
 - If we develop new dark matter detectors based on quantum materials with tiny energy threshold, we can probe otherwise inaccessible regions of parameter space
- Let's find FIMPs!

Part 1: Technical points

- For a precise prediction of the expected signal strength, we need accurate calculations of the DM relic abundance:
 - Thermal masses of SM particles in the initial state
 - Quantum statistics for relativistic particles in the plasma
 - Accurate treatment of electroweak phase transition
 - Inclusion of all possible processes
- Although DM particles couple very weakly to the SM, they may still couple strongly to each other
 - Number-changing processes in the Early Universe
 - DM self-interactions in astrophysical systems

$W^+, b ightarrow t, ho$	$\tau^+,\tau^-\to\gamma,\rho$	$W^{-},W^{+}\rightarrow h,\rho$	$W^+, e^- ightarrow u_e, ho$
$Z,W^+\to W^+,\rho$	$\bar{c}, c \rightarrow \gamma, \rho$	$\bar{\nu}_e, \nu_e \rightarrow Z, \rho$	$W^-, \nu_e \to e^-, \rho$
g, $t ightarrow t$, $ ho$	γ , $b \rightarrow b$, ρ	$\bar{\nu}_m, \nu_m \rightarrow Z, \rho$	$W^-, \nu_m \to \mu^-, \rho$
$W^-, t \rightarrow b, \rho$	$\bar{b}, b ightarrow \gamma$, $ ho$	$\bar{\nu}_t, \nu_t \rightarrow Z, \rho$	W^- , $\nu_t \rightarrow \tau^-$, ρ
$W^-, c \rightarrow s, \rho$	$\gamma,\mu^-\to\mu^-,\rho$	$Z,\tau^-\to\tau^-,\rho$	Z,t ightarrow t, ho
$W^-, u \to d, \rho$	$W^-,W^+\to\rho,\rho$	$Z,e^-\to e^-,\rho$	$g,b\to b,\rho$
$W^+ d \rightarrow u o$	$\mu^+,\mu^- o \gamma, ho$	$Z,\mu^-\to\mu^-,\rho$	$W^-,W^+\to\gamma,\rho$
W^+ , $a \rightarrow a$, p	\bar{c} , $c \rightarrow h$, ρ	$\bar{d}\!,d\to g,\rho$	$\bar{b}, b ightarrow ho, ho$
$W^+, s \rightarrow c, \rho$	$\gamma, s \rightarrow s, \rho$	$\bar{t}, t \rightarrow h, \rho$	$\bar{\nu}_e, e^- \rightarrow W^-, \rho$
$W^-, W^+ \rightarrow Z, \rho$	Z, Z ightarrow ho, ho	Z,h ightarrow Z, ho	$\bar{\nu}_m, \mu^- \rightarrow W^-, \rho$
$\bar{u}, d \rightarrow W^-, \rho$	h,h ightarrow ho, ho	$Z,Z \rightarrow h,\rho$	$\bar{\nu}_t, \tau^- \to W^-, \rho$
$ar{c},s ightarrow W^{-}$, $ ho$	$\bar{s}, s \rightarrow \gamma, \rho$	$g, u \rightarrow u, \rho$	$\bar{t}, b \rightarrow W^-$, ρ
$ar{t},t ightarrow g$, $ ho$	$\bar{s}, s \rightarrow \rho, \rho$	$\bar{u}, u \to g, \rho$	g,s ightarrow s, ho
Z, b ightarrow b, ho	$\tau^+, \tau^- \rightarrow h, \rho$	$e^+,e^-\to Z,\rho$	$\bar{b}, b \rightarrow g, \rho$
$Z, d \rightarrow d, \rho$	$b, h \rightarrow b, \rho$	$\mu^+, \mu^- \to Z, \rho$	$\gamma,W^+\to W^+,\rho$
$Z,s\to s,\rho$	$\bar{u}, u \rightarrow \gamma, \rho$	$\tau^+, \tau^- \rightarrow Z, \rho$	$\bar{d}, d \rightarrow Z, \rho$
$Z, c \rightarrow c, \rho$	$\gamma, u \rightarrow u, \rho$	$W^-, c \rightarrow d, \rho$	$\bar{s}, s \rightarrow Z, \rho$
Z , $u \rightarrow u$, ρ	$\mu^+, \mu^- \rightarrow ho, ho$	W^+ , $s \rightarrow u$, ρ	$\bar{b}, b ightarrow Z, ho$
$W^+, \tau^- \rightarrow \nu_t, \rho$	$\gamma, d \rightarrow d, \rho$	$W^-, u \to s, \rho$	$Z,\nu_e\to\nu_e,\rho$
$W^+, \mu^- o u_m, ho$	$\bar{d}, d \rightarrow \gamma, \rho$	$W^+, d \to c, \rho$	$Z, \nu_m \rightarrow \nu_m, \rho$
$\mu^-, h \rightarrow \mu^-, \rho$	$\bar{t}, t \rightarrow \rho, \rho$	$\bar{u},s\rightarrow W^{-},\rho$	$Z, \nu_t \rightarrow \nu_t, \rho$
$\bar{d} d \rightarrow h a$	$e^+, e^- \rightarrow \gamma, \rho$	$\bar{c}, d \rightarrow W^-$, ρ	$\bar{u}, u \rightarrow Z, \rho$
a, a , i, i, p	$c, h \rightarrow c, \rho$	$\gamma, t \rightarrow t, \rho$	$\bar{c}, c \rightarrow Z, \rho$
$e^{+}, e^{-} \rightarrow \rho, \rho$	$\gamma, e^- \rightarrow e^-, \rho$	$\bar{c}, c \rightarrow \rho, \rho$	$\bar{s}, s ightarrow g, ho$
$\bar{u}, u \rightarrow h, \rho$	$\tau^-, h \rightarrow \tau^-, \rho$	$ar{t},t ightarrow\gamma$, $ ho$	$W^+,h\to W^+,\rho$
$d, h \rightarrow d, \rho$	$\bar{s}, s \rightarrow h, \rho$	$\tau^+, \tau^- ightarrow ho, ho$	$t,h \rightarrow t,\rho$
$u,h \to u,\rho$	$\mu^+, \mu^- \rightarrow h, \rho$	h,h ightarrow h, ho	$g,c ightarrow c,\rho$
$e^+, e^- \to h, \rho$	$\bar{d}, d \rightarrow \rho, \rho$	$ar{b}, b ightarrow h, ho$	$\bar{t}, t \rightarrow Z, \rho$
e^- , $h ightarrow e^-$, $ ho$	$\bar{u}, u \rightarrow \rho, \rho$	$\gamma, c ightarrow c, ho$	$\bar{c}, c \rightarrow g, \rho$
	$s, h \rightarrow s, \rho$	$\gamma,\tau^-\to\tau^-,\rho$	$g,d \to d,\rho$

Quick detour: Dark matter self-interactions

- Bullet Cluster: The dominant form of matter in galaxy clusters behaves very differently from baryonic gas
- Observations require σ / m_x ≤ 1.5 cm²/g (= 3 barn/GeV)

 A self-interaction cross section close to this bound may give a better fit to observations than cold DM (cusp-core problem)

Part 2: Technical points

- Freeze-in production and laboratory constraints depend on the specific coupling structure of the dark photon
- Interesting example: Equal but opposite coupling to **baryons and leptons** $(g' = g_{B-L})$
- DM charge is a **free parameter**, but should be similar in size to the other couplings

- Important subtlety: At finite temperatures the SM photon acquires a plasma mass, leading to mixing between the dark and the visible photon
- **Plasmon decays** give important contribution to DM relic density

Part 3: Technical points

• Various ingredients are necessary to calculate scattering rate

$$R_{\mathbf{k}\to\mathbf{k}'} = \frac{\rho_{\chi}}{m_{\chi}} \frac{\bar{\sigma}_e}{8\pi\mu_{\chi e}^2} \int d^3q \, |F_{\rm DM}(q)|^2 |\mathcal{F}_{\rm med}(q)|^2 |f_{\mathbf{k}\to\mathbf{k}'}(q)|^2 \, \frac{\tilde{g}(v_{\rm min},\psi)}{|\mathbf{q}|}$$

Part 3: Technical points

Emmy Noether-Programm

43

Darker than dark: Searching for hidden particles with tiny couplings Felix Kahlhoefer | 18 December 2019

