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HQET heavy-to-heavy current

J = h+v′hv = ZJ(αs(µ);ϕ)Jr(µ)

hv = Z
1/2
h (αs(µ))hvr(µ)

coshϕ = v · v′



Green functions

0 x

−i<hv(x)h+v (0)> = δ(x⊥)W (t) = Zhδ(x⊥)Wr(t;µ)

x x′

0

(−i)2<hv′(x′)J(0)h+v (x)> = δ(x⊥)δ(x′⊥′)W (t, t′;ϕ)

= ZhZJδ(x⊥)δ(x′⊥′)Wr(t, t
′;ϕ;µ)
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Renormalization

W (t, t′; 0) = W (t+ t′)

log
W (t, t′;ϕ)

W (t, t′; 0)
= logZJ + finite

Γ(αs, ϕ) =
d logZJ
d log µ

Γ(αs, 0) = 0



Exponentiation in QED

Coordinate space, Wilson line of any shape (nf = 0)

W (t) =
0 t

+

+ + +

+ · · ·
logW (t) = ?



Exponentiation in QED

0 < t1 < t2 < t, 0 < t′1 < t′2 < t

0 tt1 t2
× 0 tt′1 t′2

= + +

+ + +

logW (t) =
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Exponentiation in QCD

[ta, tb] = ifabctc

= −
Gatheral (1983); Frenkel, Taylor (1984)

TFnf ⇒ all color structures allowed
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Exponentiation in QCD

logW = CF
g20

(4π)d/2

[
w + (CAwA + TFnfwf )

g20
(4π)d/2

+
(
C2
AwAA + CFTFnfwFf + CATFnfwAf + (TFnf )

2wff
)( g20

(4π)d/2

)2]

Γ = CF
αs
π

[
γ + (CAγA + TFnfγf )

αs
π

+
(
C2
AγAA + CFTFnfγFf + CATFnfγAf + (TFnf )

2 γff
) (αs

π

)2]
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Momentum space

ω ω′

Vertex function V : 1PI, without external-leg propagators

G(ω, ω′;ϕ) = V (ω, ω′;ϕ)Sv(ω)Sv′(ω
′)

V (ω, ω′;ϕ) = ZJZ
−1
h Vr(ω, ω

′;ϕ;µ)

log V (ω, ω′;ϕ)− log V (ω, ω′; 0) = logZJ + finite

Convenient to set ω′ = ω



ϕ = 0

V (ω, ω′; 0) =
S−1(ω′)− S−1(ω)

ω′ − ω
= Z−1h Vr(ω, ω

′; 0;µ)

log V (ω, ω′; 0) = − logZh + finite

Zh is gauge dependent; ZJ is gauge invariant



History

1 loop

Γ(αs, ϕ) = CF
αs
π

(ϕ cothϕ− 1)

Follows from the soft radiation function
in classical electrodynamics
The Guinness Book of Records The anomalous
dimension known for a longest time
(> 100 years)

2 loops Korchemsky, Radyushkin (1987)

3 loops here

γh at 3 loops — Chetyrkin, Grozin (2003)
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Abelian large nf structures
CF (TFnf )

L−1αLs and C2
F (TFnf )

L−2αLs (L ≥ 3)

QED with nf flavors CF = 1, CA = 0, TF = 1, β0 = −4
3
nf

At Lβ0 and NLβ0, the Wilson line of any shape

logW =

with

up to NLβ0. First broken at NNLβ0

nL−3f αL (L ≥ 4)
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Abelian large nf structures

logW (t, t′;ϕ)− logW (t, t′; 0)

= − = logZJ + finite

(external-leg corrections cancel). Momentum space

log V (ω, ω;ϕ)− log V (ω, ω; 0)

= − = logZJ + finite



Abelian large nf structures

Lβ0

log
V (ϕ)

V (0)
=

1

β0

∞∑
L=1

aLb
L
0 =

1

β0

∞∑
L=1

F (ε, Lε)

L

(
b

ε+ b

)L
b0 =

β0e
2
0

(4π)d/2
= bZα(b)eγεµ2ε b =

β0α

4π
Zα =

1

1 + b/ε

F (ε, u) =
∞∑

n,m=0

Fnmε
num logZJ =

Z1

ε
+
Z2

ε2
+ · · ·

β0Z1 = F00b− F10
b2

2
+ F20

b3

3
− F30

b4

4
+ · · ·

Γ = −2
dZ1

d log b
= −2

b

β0
F (−b, 0)



Abelian large nf structures

Γ = CF
αs
6π

ϕ cothϕ− 1

B(2 + b, 2 + b)Γ(1 + b)Γ(1− b)

= CF
αs
π

[
1 +

5

3
b− 1

3
b2 +

(
2ζ3 −

1

3

)
b3 + · · ·

]
(ϕ cothϕ− 1)

Beneke, Braun (1995)

NLβ0
I NL aL. Photon self energy

Π = + 2 +

I NL Zα
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π
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AzAA + TFnf (CF zFf + CAzAf ) + (TFnf )

2zff
]
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CFCATFnf

logZJ = · · ·+ CF

(αs
π

)3
[
C2
AzAA + TFnf (CF zFf + CAzAf ) + (TFnf )

2zff
]

Nc →∞ Nc

(zFf
2

+ zAf

)



CFC
2
A

Nc →∞ NczAA

Only topologies surviving at Nc →∞



Topologies and master integrals

71 master integrals

I 7 straight-line [Grozin (2000)]

I 8 products of lower loops

I 10 generalized triangles [Grozin, Kotikov (2011)]

I 46 nontrivial



Topologies and master integrals

71 master integrals

I 7 straight-line [Grozin (2000)]

I 8 products of lower loops

I 10 generalized triangles [Grozin, Kotikov (2011)]

I 46 nontrivial



Differential equations

x = e−ϕ

Symmetry x→ 1/x. Differentiate in x and reduce to
masters.

Canonical basis ~f [Henn (2013)]

∂x ~f(x, ε) = ε

[
a

x
+

b

x+ 1
+

c

x− 1

]
~f(x, ε)

4 singular points

I x = 1 (ϕ→ 0)

I x = 0, ∞ (ϕ→ ±∞)

I x = −1 (ϕE → π)

Harmonic polylogarithms Hn1...nk
(x) (ni = 0, ±1)

[Remiddi,Vermaseren (2000)]
Uniform weight functions
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Result

Γ(αs, x) = CF
αs
π

{
Ã1

+

[
1

2
CA

(
Ã3 + Ã2

)
+

1

9

(
67

4
CA − 5TFnf

)
Ã1

]
αs
π

+

{[
1

4

(
Ã5 + Ã4 + B̃5 + B̃3

)
+

67

36
Ã3 +

29

18
Ã2

+
1

24

(
11ζ3 +

245

4

)
Ã1

]
C2
A

−
[

5

9

(
Ã3 + Ã2

)
+

1

6

(
7ζ3 +

209

36

)
Ã1

]
CATFnf

+

(
ζ3 −

55

48

)
Ã1CFTFnf −

1

27
Ã1 (TFnf )

2

}(
αs
π

)2}



Result

Ãi(x) = Ai(x)− Ai(1)

A1(x) =
ξ

2
H1(y)

A2(x) =
1

2
H1,1(y) +

π2

3
− ξ

[
1

2
H1,1(y)−H1,0(y)

]
A3(x) = −ξ

[
1

4
H1,1,1(y) +

π2

6
H1(y)

]
+ ξ2

[
1

4
H1,1,1(y) +

1

2
H1,0,1(y)

]
· · ·

y = 1− x2 ξ − 1 + x2

1− x2

Uniform weight i



ϕ→∞
x→ 0

Γ(αs, x) = K(αs)ϕ+O(1)

Korchemsky (1989); Korchemsky, Marchesini (1993)

K(αs) = CF
αs
π

{
1 +

[
1

12

(
π2 − 67

3

)
CA +

5

9
TFnf

]
αs
π

+

[
1

24

(
11

30
π4 + 11ζ3 −

67

9
π2 +

245

4

)
C2
A

− 1

6

(
7ζ3 −

5

9
π2 +

209
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)
CATFnf
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)
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Let’s define a
K(αs) = CF

a

π

Γ(αs, x) = Ω(a, x)

Ω(a, x) = CF
a

π

[
Ã1 +

1

2

(
Ã3 + Ã2 +

π2

6
Ã1

)
CA

a

π

+
1

4

(
Ã5 + Ã4 − Ã2 + B̃5 + B̃3 +

π2

3
Ã3 +

π2

3
Ã2 −

π4

180
Ã1

)
C2
A

(
a

π

)2]
Does not contain nf !
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ϕE → π

Euclidean ϕE = π − δ

Γ =
rV (r)

δ

Kilian, Mannel, Ohl (1993)



Conformal symmetry
Euclidean space

ds2 = dx20 + d~x2

Spherical coordinates

x0 = r cos δ ~x = r~n sin δ

ds2 = dr2 + r2(dδ2 + sin2 δ d~n2)

δ � 1

r = ey0 ~y = δ~n

ds2 = e2y0
(
dy20 + d~y2

)

⇒

yIR0

yUV
0

xIR0

xUV
0
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Conformal symmetry

logW = Γ log
xIR0
xUV
0

= V (~y)
(
yIR0 − yUV

0

)
Γ =

yV (y)

δ

In QCD conformal symmetry is anomalous ⇒ β function

β0 = 0 : δΓ(αs, π − δ)− rV (r, αs) = 0

δΓ(αs, π − δ)− rV (r, αs(µ)) = Cβ0α
2
s

Choosing the right µ in 1-loop Γ

At 3 loops δΓ(π − δ) differs from rV (r) by a term ∼ β0α
3
s



Conformal symmetry

logW = Γ log
xIR0
xUV
0

= V (~y)
(
yIR0 − yUV

0

)
Γ =

yV (y)

δ

In QCD conformal symmetry is anomalous ⇒ β function

β0 = 0 : δΓ(αs, π − δ)− rV (r, αs) = 0

δΓ(αs, π − δ)− rV (r, αs(µ)) = Cβ0α
2
s

Choosing the right µ in 1-loop Γ
At 3 loops δΓ(π − δ) differs from rV (r) by a term ∼ β0α

3
s



Conformal symmetry

logW = Γ log
xIR0
xUV
0

= V (~y)
(
yIR0 − yUV

0

)
Γ =

yV (y)

δ

In QCD conformal symmetry is anomalous ⇒ β function

β0 = 0 : δΓ(αs, π − δ)− rV (r, αs) = 0

δΓ(αs, π − δ)− rV (r, αs(µ)) = Cβ0α
2
s

Choosing the right µ in 1-loop Γ

At 3 loops δΓ(π − δ) differs from rV (r) by a term ∼ β0α
3
s



Conformal symmetry

logW = Γ log
xIR0
xUV
0

= V (~y)
(
yIR0 − yUV

0

)
Γ =

yV (y)

δ

In QCD conformal symmetry is anomalous ⇒ β function

β0 = 0 : δΓ(αs, π − δ)− rV (r, αs) = 0

δΓ(αs, π − δ)− rV (r, αs(µ)) = Cβ0α
2
s

Choosing the right µ in 1-loop Γ
At 3 loops δΓ(π − δ) differs from rV (r) by a term ∼ β0α

3
s



Conclusion

I Γ(αs, ϕ) at 3 loops has been calculated via harmonic
polylogarithms

I CF (TFnf )
L−1 and C2

F (TFnf )
L−2 (L ≥ 3) in Γ and γh

are known to all loops

I ϕ→∞: the known result is reproduced

I Ω(a, x) does not contain nf : only 1 gluonic color
structure at each L (1 structure at 2 loops and 3
structures at 3 loops disappear)

I ϕE = π − δ: the relation to V (r) which follows from
conformal invariance is violated at 3 loops by a term
∼ β0α

3
s
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