Meson transition form factors and their applications

Pablo Sánchez Puertas sanchezp@kph.uni-mainz.de

Johannes Gutenberg-Universität Mainz In collaboration with P. Masjuan

1. Dezember 2014, Kernphysik Seminar

UNIVERSITÄT MAINZ

IOHANNES GUTENBERG

Outline

- 1. Pseudoscalar transition form factors
- 2. Our proposal: Padé Approximants
- 3. Parameters extraction
- 4. Selected applications
 - η Dalitz decay
 - (g 2)_μ: Hadronic light-by-light
 - $P \rightarrow \overline{\ell} \ell$ decays
 - $\eta \eta'$ mixing
- 5. Summary & outlook

Meson transition form factors and their applications

Pseudoscalar transition form factors

Section 1

Pseudoscalar transition form factors

The Transition Form Factor

- Governs $P\gamma^*\gamma^*$ interactions
- Vertex constrained by Bose symmetry and Lorentz and gauge invariance
- The TFF depends on γ virtualities, q_1^2, q_2^2
- Bose symmetry $\rightarrow F_{P\gamma^*\gamma^*}(q_1^2, q_2^2) = F_{P\gamma^*\gamma^*}(q_2^2, q_1^2)$

$$i\mathcal{M} = ie^2 \varepsilon^{\mu\nu\rho\sigma} \epsilon_{1\mu} \epsilon_{2\nu} q_{1\rho} q_{2\sigma} F_{P\gamma^*\gamma^*}(q_1^2, q_2^2)$$

* /

The Transition Form Factor

Relevant in many process

 $i\mathcal{M} = ie^2 \varepsilon^{\mu\nu\rho\sigma} \epsilon_{1\mu} \epsilon_{2\nu} q_{1\rho} q_{2\sigma} F_{P\gamma^*\gamma^*}(q_1^2, q_2^2)$

The Transition Form Factor

Relevant in many process

 $i\mathcal{M} = ie^2 \varepsilon^{\mu\nu\rho\sigma} \epsilon_{1\mu} \epsilon_{2\nu} q_{1\rho} q_{2\sigma} F_{P\gamma^*\gamma^*}(q_1^2, q_2^2)$

The Transition Form Factor

Relevant in many process For us, particularly relevant the space-like

However, double-virtual not available

$$i\mathcal{M} = i e^2 \varepsilon^{\mu\nu\rho\sigma} \epsilon_{1\mu} \epsilon_{2\nu} q_{1\rho} q_{2\sigma} F_{P\gamma^*\gamma}(-Q^2,0)$$

The Transition Form Factor

Use single-virtual measurements instead

Focus on $F_{P\gamma^*\gamma}(Q^2) \equiv F_{P\gamma^*\gamma}(-q^2,0)$

$$i\mathcal{M} = ie^2 \varepsilon^{\mu\nu\rho\sigma} \epsilon_{1\mu} \epsilon_{2\nu} q_{1\rho} q_{2\sigma} F_{P\gamma^*\gamma}(-Q^2,0)$$

Meson transition form factors and their applications Pseudoscalar transition form factors <u>What do</u> we know theoretically?

The Transition Form Factor

HIGH ENERGIES (pQCD)

• Space-like (SL) $F_{P\gamma^*\gamma}(Q^2, 0)$

$$F_{P\gamma^*\gamma}(Q^2) = \int dx \ T_H(x, Q^2, \mu) \Phi_P(x, \mu_F);$$

- $T_H(x, Q^2)$ perturbative in $\alpha_s(Q^2)$
- $\phi_P(x, \mu_F)$ non-pert. \rightarrow **MODELLED!**

$$\begin{split} & F_{\pi\gamma^*\gamma}(\infty) {=} 2F_{\pi}Q^{-2} \\ & F_{\pi\gamma^*\gamma^*}(\infty,\infty) {=} (2/3)F_{\pi}Q^{-2} \end{split}$$

Meson transition form factors and their applications Pseudoscalar transition form factors What do we know theoretically?

The Transition Form Factor

HIGH ENERGIES (pQCD)

• Space-like (SL) $F_{P\gamma^*\gamma}(Q^2,0)$

$$F_{P\gamma^*\gamma}(Q^2) = \int dx \ T_H(x, Q^2, \mu) \Phi_P(x, \mu_F);$$

- $T_H(x, Q^2)$ perturbative in $\alpha_s(Q^2)$
- $\phi_P(x, \mu_F)$ non-pert. \rightarrow **MODELLED!**

$$F_{\pi\gamma^*\gamma}(\infty) = 2F_{\pi}Q^{-2}$$

$$F_{\pi\gamma^*\gamma^*}(\infty,\infty) = (2/3)F_{\pi}Q^{-2}$$

LOW ENERGIES (χPT)

- ABJ anomaly prediction $F_{P\gamma\gamma}(0,0)$
- Extensions for $Q^2 \simeq 0$ poor (vectors)
- **MODEL** the vectors (i.e.: $R\chi PT$)

 $F_{\pi\gamma\gamma}(0,0) = (4\pi^2 F_{\pi})^{-1}$

How to do physics involving $F_{P\gamma^*\gamma^*}(Q_1^2,Q_2^2)$ in between χPT and pQCD realms?

- Different models (assumptions) \rightarrow different values.
- Introduces uncontrolled model-dependency
- Big drawback when going for precision physics!

Look for an alternative approach which represents a good (improvable) approximation of reality while avoiding any assumptions \rightarrow data-based

Meson transition form factors and their applications Our proposal: Padé Approximants

Section 2

Our proposal: Padé Approximants

Meson transition form factors and their applications Our proposal: Padé Approximants Introduction to the method

Padé Approximants: Introduction to the method

$$F_{P\gamma^*\gamma}(Q^2) = F_{P\gamma^*\gamma}(0)(1 + b_PQ^2 + c_PQ^4 + ...)$$

$$F_{P\gamma^*\gamma}(Q^2) = F_{P\gamma^*\gamma}(0)(1 + b_PQ^2 + c_PQ^4 + ...)$$

Then, Taylor expand!

Model independent from convergence **Systematic** from known error $\mathcal{O}(Q^{2n})$

$$Q^{2}F_{P\gamma^{*}\gamma}(Q^{2}) = Q^{2}F_{P\gamma^{*}\gamma}(0)(1+b_{P}Q^{2}+c_{P}Q^{4}+...)$$

Then, Taylor expand!

Model independent from convergence **Systematic** from known error $\mathcal{O}(Q^{2n})$

$$Q^{2}F_{P\gamma^{*}\gamma}(Q^{2}) = Q^{2}F_{P\gamma^{*}\gamma}(0)(1+b_{P}Q^{2}+c_{P}Q^{4}+...)$$

Then, Taylor expand!

Model independent from convergence **Systematic** from known error $\mathcal{O}(Q^{2n})$

Singularities cuts \longrightarrow Poor radius of convergence

$$Q^{2}F_{P\gamma^{*}\gamma}(Q^{2}) = Q^{2}F_{P\gamma^{*}\gamma}(0)(1+b_{P}Q^{2}+c_{P}Q^{4}+...)$$

Then, Taylor expand!

Model independent from convergence **Systematic** from known error $\mathcal{O}(Q^{2n})$

Singularities cuts \longrightarrow Poor radius of convergence

Padé Approximants
Padé Approximants have better convergence prop.

$$P_{M}^{N}(Q^{2}) = \frac{T_{N}(Q^{2})}{R_{M}(Q^{2})} = a_{0}Q^{2} + a_{1}Q^{4} + a_{2}Q^{6} + ... + \mathcal{O}(Q^{2})^{N+M+1}$$

$$P_{1}^{1} = \frac{F_{P\gamma^{*}\gamma}(0)Q^{2}}{1 - b_{P}Q^{2}} = Q^{2}F_{P\gamma^{*}\gamma}(0)(1 + b_{P}Q^{2} + \mathcal{O}(Q^{4})) \checkmark$$

$$Q^{2}F_{P\gamma^{*}\gamma}(Q^{2}) = Q^{2}F_{P\gamma^{*}\gamma}(0)(1+b_{P}Q^{2}+c_{P}Q^{4}+...)$$

Then, Taylor expand!

Model independent from convergence **Systematic** from known error $\mathcal{O}(Q^{2n})$

Singularities cuts \longrightarrow Poor radius of convergence

Padé Approximants have better convergence prop. $P_{M}^{N}(Q^{2}) = \frac{T_{N}(Q^{2})}{R_{M}(Q^{2})} = a_{0}Q^{2} + a_{1}Q^{4} + a_{2}Q^{6} + ... + \mathcal{O}(Q^{2})^{N+M+1}$

Model independent from convergence theorems Systematic from error estimation ability Meson transition form factors and their applications Our proposal: Padé Approximants Convergence properties

Padé Approximants: Convergence properties

Convergence known for meromorphic (large- N_c) and Stieltjes (DR) for the last $\lim_{N\to\infty} P_{N+1}^N(x) \le f(x) \le P_N^N(x)$

Padé Approximants: Convergence Properties

Obtaining the coefficients? PAs as fitting functions

- Generate space-like pseudo-data from our toy model
- First pole-dominance $\rightarrow P_1^N$ sequence: "easy fit"
- Asymptotics and analytic structure $\rightarrow P_N^N$: "hard fit"
- Obtain $Q^2 F_{P\gamma^*\gamma}(Q^2) = Q^2 F_{P\gamma^*\gamma}(0) \left(1 + b_P \frac{Q^2}{m_P^2} + c_P \frac{Q^4}{m_P^4} + ...\right)$

Based on resonance ideas, factorization is assumed

$$\mathcal{F}_{P\gamma^*\gamma^*}(\mathcal{Q}_1^2,\mathcal{Q}_2^2)=\mathcal{F}_{P\gamma^*\gamma}(\mathcal{Q}_1^2,0) imes\mathcal{F}_{P\gamma\gamma^*}(0,\mathcal{Q}_2^2)$$

Based on resonance ideas, factorization is assumed

$$\mathcal{F}_{P\gamma^*\gamma^*}(\mathcal{Q}_1^2,\mathcal{Q}_2^2)=\mathcal{F}_{P\gamma^*\gamma}(\mathcal{Q}_1^2,0) imes\mathcal{F}_{P\gamma\gamma^*}(0,\mathcal{Q}_2^2)$$

Based on resonance ideas, factorization is assumed

$$\mathcal{F}_{P\gamma^*\gamma^*}(Q_1^2,Q_2^2)=\mathcal{F}_{P\gamma^*\gamma}(Q_1^2,0) imes\mathcal{F}_{P\gamma\gamma^*}(0,Q_2^2)$$

This is known to fail at high energies as it falls as Q^{-4} instead of Q^{-2}

Based on resonance ideas, factorization is assumed

$$\mathcal{F}_{P\gamma^*\gamma^*}(Q_1^2,Q_2^2)=\mathcal{F}_{P\gamma^*\gamma}(Q_1^2,0) imes\mathcal{F}_{P\gamma\gamma^*}(0,Q_2^2)$$

This is known to fail at high energies as it falls as Q^{-4} instead of Q^{-2}

Can we generalize Padé approximants to the bivariate case?

Based on resonance ideas, factorization is assumed

$$\mathcal{F}_{P\gamma^*\gamma^*}(Q_1^2,Q_2^2)=\mathcal{F}_{P\gamma^*\gamma}(Q_1^2,0) imes\mathcal{F}_{P\gamma\gamma^*}(0,Q_2^2)$$

This is known to fail at high energies as it falls as Q^{-4} instead of Q^{-2}

Can we generalize Padé approximants to the bivariate case?

YES! (Chisholm '73)

— The most simple approximant —

$$P_1^0(Q_1^2, Q_2^2) = \frac{a_0}{1 - \frac{a_1}{a_0}(Q_1^2 + Q_2^2) + \frac{2a_1^2 - a_0a_{1,1}}{a_0^2}Q_1^2} = a_0 + a_1(Q_1^2 + Q_2^2) + a_{1,1}Q_1^2Q_2^2 + \dots$$

What have we learned so far ?

Systematic easy approximation through PAs in space-like region

Based on well-established mathematical theory

Everything amounts to obtain the derivatives (single and double-virtual)

Data driven: forget about (model) prejudices, let data to judge on them

Meson transition form factors and their applications Parameters Extraction: data-driven

Section 3

Parameters Extraction: data-driven

The Transition Form Factor

Single-virtual $F_{P\gamma^*\gamma}(Q^2)$

- Single-tag method: CELLO, CLEO, Belle, BaBar, BES-III*
- Detected $e^{\pm} \rightarrow$ space-like γ^{*}
- e^{\pm} along beam axis \rightarrow quasireal γ

Double-virtual $F_{P\gamma^*\gamma^*}(Q_1^2, Q_2^2)$

- Experimentally challenging
- Not measured yet
- More comments later

Meson transition form factors and their applications Parameters Extraction: data-driven Results: π^0

Results for the π^0

Take all the available data for $Q^2 F_{\pi\gamma^*\gamma}(Q^2)$

CELLO('91), CLEO('98), BABAR('09), Belle('12)

OUR RESULTS

- *P*^N₁ reaches N= 6 *P*^N_N + OPE reaches N= 3
- We predict

$$egin{aligned} b_{\pi} &= 0.0324(12)(19)(m_{\pi})^{-2}\ c_{\pi} &= 1.06(9)(25) imes 10^{-3}(m_{\pi})^{-4} \end{aligned}$$

P. Masjuan, Phys.Rev., D86, 2012

Meson transition form factors and their applications Parameters Extraction: data-driven Results: π^0

P. Masjuan, Phys.Rev., D86, 2012

Meson transition form factors and their applications Parameters Extraction: data-driven Results: n

Results for the η

Take all the available data for $Q^2 F_{\eta \gamma^* \gamma}(Q^2)$

CELLO('91), CLEO('98), BABAR('11)

Meson transition form factors and their applications Parameters Extraction: data-driven Results: η

Results for the η

Take all the available data for $Q^2 F_{\eta \gamma^* \gamma}(Q^2)$

CELLO('91), CLEO('98), BABAR('11)

Meson transition form factors and their applications Parameters Extraction: data-driven Results: η'

Results for the η^\prime

Take all the available data for $Q^2 F_{\eta' \gamma^* \gamma}(Q^2)$

CELLO('91), CLEO('98), L3('98) BABAR('11)

Meson transition form factors and their applications Parameters Extraction: data-driven Results: $\eta^{\,\prime}$

Results for the η'

Take all the available data for $Q^2 F_{\eta' \gamma^* \gamma}(Q^2)$

CELLO('91), CLEO('98), L3('98) BABAR('11)

- TFF low energy parameters determined to a high precision (π^0, η, η')
- Inputs ready for TFF reconstruction
- We are ready to do calculations/predictions

Section 4

Predictiveness:
$$\eta \to \gamma \overline{\ell} \ell$$

Compare to A2 Coll. results in Mainz [Phys.Rev. C89 (2014) 044608] The results are excellent \rightarrow reasonable to use them in our fit

Predictiveness: $\eta \rightarrow \gamma \overline{\ell} \ell$

Dalitz decays: $\eta \to \gamma \overline{\ell} \ell$

PREVIOUS RESULTS

$$b_{\eta} = 0.60(6)(3)(m_{\eta})^{-2}$$

 $c_{\eta} = 0.37(10)(7)(m_{\eta})^{-4}$
 $d_{\eta} = -$
Asymptotics = 0.160(24) GeV

$$\frac{\text{UPDATED RESULTS}}{b_{\eta} = 0.576(11)(1)(m_{\eta})^{-2}} c_{\eta} = 0.339(15)(2)(m_{\eta})^{-4} d_{\eta} = 0.200(14)(10)(m_{\eta})^{-6} \text{Asymptotics} = 0.177(15) \text{ GeV}$$

Predictiveness: $\eta \rightarrow \gamma \overline{\ell} \ell$

Dalitz decays: $\eta \rightarrow \gamma \overline{\ell} \ell$

Previous Results

$$b_{\eta} = 0.60(6)(3)(m_{\eta})^{-2}$$

 $c_{\eta} = 0.37(10)(7)(m_{\eta})^{-4}$
 $d_{\eta} = -$
Asymptotics = 0.164(21) GeV

$$\frac{\text{UPDATED RESULTS}}{b_{\eta} = 0.576(11)(3)(m_{\eta})^{-2}} c_{\eta} = 0.339(15)(3)(m_{\eta})^{-4} d_{\eta} = 0.200(14)(10)(m_{\eta})^{-6} \text{Asymptotics} = 0.177(15) \text{ GeV}$$

Meson transition form factors and their applications Predictiveness: $\eta \rightarrow \gamma \overline{\ell} \ell$

Dalitz decays: $\eta \rightarrow \gamma \ell \ell$

For Theory, Exp (fit to VMD) and our latest result.

Dalitz decays: $\eta \rightarrow \gamma \overline{\ell} \ell$

Method is very predictive

Convergence is excellent

Systematically improves with data

Space-like observables even better: high confidence

R. Escribano, P. Masjuan, P. Sanchez, In preparation

Meson transition form factors and their applications $(g - 2)_{\mu}$: Hadronic light-by-light

Section 5

$(g-2)_{\mu}$: Hadronic light-by-light

 $(g-2)_{\mu}$: Hadronic light-by-light

$(g-2)_{\mu}$: very brief introduction

WHAT IS g?

- Magnetic dipole $\vec{\mu}$ in a \vec{B} field: $H = -\vec{\mu} \cdot \vec{B}$ Where $\vec{\mu} = g \frac{Q}{2m} \vec{S}$ In classical physics g = 1 expected

 $(g-2)_{\mu}$: Hadronic light-by-light

$(g-2)_{\mu}$: very brief introduction

WHAT IS g ?

- Magnetic dipole $\vec{\mu}$ in a \vec{B} field: $H = -\vec{\mu} \cdot \vec{B}$ Where $\vec{\mu} = g \frac{Q}{2m} \vec{S}$

 - In classical physics g = 1 expected

What about QM?

- In QM, fermions with $S = \frac{1}{2}$ follow Dirac Eqn.
- It follows, for fundamental fermions g = 2

 $(g-2)_{\mu}$: Hadronic light-by-light

$(g-2)_{\mu}$: very brief introduction

WHAT IS g ?

- Magnetic dipole $\vec{\mu}$ in a \vec{B} field: $H = -\vec{\mu} \cdot \vec{B}$
- Where $\vec{\mu} = g \frac{Q}{2m} \vec{S}$
- In classical physics g = 1 expected

What about QM?

- In QM, fermions with $S = \frac{1}{2}$ follow Dirac Eqn.
- It follows, for fundamental fermions g = 2

What about QED?

- Radiative corrections change Dirac's value.
- Schwinger, QED @ NLO: $a_f = \frac{(g-2)_f}{2} = \frac{\alpha}{2\pi}$

 $(g-2)_{\mu}$: Hadronic light-by-light

$(g-2)_{\mu}$: very brief introduction

WHAT IS g?

- Magnetic dipole $\vec{\mu}$ in a \vec{B} field: $H = -\vec{\mu} \cdot \vec{B}$ Where $\vec{\mu} = g \frac{Q}{2m} \vec{S}$

 - In classical physics g = 1 expected

WHAT ABOUT THE SM?

• $SU(3) \otimes SU(2) \otimes U(1)$: all gauge sectors entering at some order

$$\begin{aligned} a_{\mu}^{SM} &= 11659181.3(5.8) \times 10^{-10} \ _{[QED,QCD,EW]} \\ a_{\mu}^{Exp.} &= 11659208.0(6.3) \times 10^{-10} \\ a_{\mu}^{Exp.} - a_{\mu}^{SM} &= 26.7(8.6) \times 10^{-10} \sim 3\sigma \end{aligned}$$

Uncertainty coming fully from the hadronic contributions

 $(g-2)_{\mu}$: Hadronic light-by-light

$(g-2)_{\mu}$: very brief introduction

WHAT IS g?

- Magnetic dipole $\vec{\mu}$ in a \vec{B} field: $H = -\vec{\mu} \cdot \vec{B}$ Where $\vec{\mu} = g \frac{Q}{2m} \vec{S}$

 - In classical physics g = 1 expected

WHAT ABOUT THE SM?

• $SU(3) \otimes SU(2) \otimes U(1)$: all gauge sectors entering at some order

$$\begin{split} a_{\mu}^{SM} &= 11659181.3(5.8) \times 10^{-10} \ _{[QED,QCD,EW]} \\ a_{\mu}^{Exp.Future} &= 11659208.0(1.6) \times 10^{-10} \\ a_{\mu}^{Exp.} - a_{\mu}^{SM} &= 26.7(8.6) \times 10^{-10} \sim 3\sigma \end{split}$$

Uncertainty coming fully from the hadronic contributions

 $(g-2)_{\mu}$: Hadronic light-by-light

$(g-2)_{\mu}$: very brief introduction

WHAT IS g ?

• Magnetic dipole $\vec{\mu}$ in a \vec{B} field: $H = -\vec{\mu} \cdot \vec{B}$

• Where
$$\vec{\mu} = g \frac{Q}{2m} \vec{S}$$

• In classical physics g = 1 expected

WHAT ABOUT THE SM?

• $SU(3)\otimes SU(2)\otimes U(1)$: all gauge sectors entering at some order

$$\begin{aligned} a_{\mu}^{SM} &= 11659181.3(5.8) \times 10^{-10} \text{ [QED, QCD, EW]} \\ a_{\mu}^{Exp.Future} &= 11659208.0(1.6) \times 10^{-10} \\ a_{\mu}^{Exp.} - a_{\mu}^{SM} &= 26.7(8.6) \times 10^{-10} \sim 3\sigma \end{aligned}$$

• Uncertainty coming fully from the hadronic contributions

 $(g-2)_{\mu}$: Hadronic light-by-light

$(g-2)_{\mu}$: hadronic light-by-light

Eduardo de Rafael ('94): large- $N_c + \chi PT$ counting

 $(g-2)_{\mu}$: Hadronic light-by-light

$(g-2)_{\mu}$: hadronic light-by-light

Eduardo de Rafael ('94): large- $N_c + \chi PT$ counting

 $(g-2)_{\mu}$: Hadronic light-by-light

$(g-2)_{\mu}$: hadronic light-by-light

Eduardo de Rafael ('94): large- $N_c + \chi PT$ counting

Knecht & Nyffeler ('02): π^0, η, η' -exchange

- Expressed as an integral involving $F_{P\gamma^*\gamma^*}(Q_1^2,Q_2^2)$
- \bullet SL low energy regime \rightarrow our PAs are good
- \bullet Multiscale, also high energies relevant \rightarrow 2-point PAs
- \bullet Two virtualities \rightarrow bivariate PAs

 $(g-2)_{\mu}$: Hadronic light-by-light

$(g-2)_{\mu}$: hadronic light-by-light

However, no experimental data is available

- Use the simplest approximant -

$$P_{1}^{0}(Q_{1}^{2}, Q_{2}^{2}) = \frac{F_{P\gamma\gamma}(0)}{1 + \frac{b_{P}}{m_{P}^{2}}(Q_{1}^{2} + Q_{2}^{2}) + (2b_{P}^{2} - \frac{a_{1,1}}{F_{P\gamma\gamma}(0)})\frac{Q_{1}^{2}Q_{2}^{2}}{m_{P}^{4}}}$$

HE: $a_{1,1}/F_{P\gamma\gamma}(0) = 2b_{P}^{2}$; LE: $a_{1,1}/F_{P\gamma\gamma}(0) = b_{P}^{2}$; LE: $a_{1,1}/F_{P\gamma\gamma}(0) = 0$

$(g-2)_{\mu}$: hadronic light-by-light

However, no experimental data is available

- Use the simplest approximant -

$$P_1^0(Q_1^2,Q_2^2) = rac{F_{P\gamma\gamma}(0)}{1+rac{b_P}{m_P^2}(Q_1^2+Q_2^2)+(2b_P^2-rac{a_{1,1}}{F_{P\gamma\gamma}(0)})rac{Q_1^2Q_2^2}{m_P^2}}$$

HE:
$$a_{1,1}/F_{P\gamma\gamma}(0) = 2b_P^2$$
; LE: $a_{1,1}/F_{P\gamma\gamma}(0) = b_P^2$; LE: $a_{1,1}/F_{P\gamma\gamma}(0) = 0$

$(g-2)_{\mu}$: hadronic light-by-light

However, no experimental data is available

— Use the simplest approximant —

$$\mathcal{P}_1^0(Q_1^2,Q_2^2) = rac{\mathcal{F}_{\mathcal{P}\gamma\gamma}(0)}{1+rac{b_P}{m_P^2}(Q_1^2+Q_2^2)}$$

 $\mathsf{HE:} \ a_{1,1}/F_{P\gamma\gamma}(0) = 2b_P^2; \ \mathsf{LE:} \ a_{1,1}/F_{P\gamma\gamma}(0) = b_P^2; \ \mathsf{LE:} \ a_{1,1}/F_{P\gamma\gamma}(0) = 0$

$(g-2)_{\mu}$: hadronic light-by-light

However, no experimental data is available

— Use the simplest approximant —

$$P_1^0(Q_1^2,Q_2^2) = rac{F_{P\gamma\gamma}(0)}{1+rac{b_P}{m_P^2}(Q_1^2+Q_2^2)+(2b_P^2-rac{a_{1,1}}{F_{P\gamma\gamma}(0)})rac{Q_1^2Q_2^2}{m_P^4}}$$

HE: $a_{1,1}/F_{P\gamma\gamma}(0) = 2b_P^2$; LE: $a_{1,1}/F_{P\gamma\gamma}(0) = b_P^2$; LE: $a_{1,1}/F_{P\gamma\gamma}(0) = 0$

$(g-2)_{\mu}$: hadronic light-by-light

However, no experimental data is available

- Use the simplest approximant -

$$P_1^0(Q_1^2,Q_2^2) = rac{F_{P\gamma\gamma}(0)}{1+rac{b_P}{m_P^2}(Q_1^2+Q_2^2)+b_P^2rac{Q_1^2Q_2^2}{m_P^4}}$$

HE:
$$a_{1,1}/F_{P\gamma\gamma}(0) = 2b_P^2$$
; LE: $a_{1,1}/F_{P\gamma\gamma}(0) = b_P^2$; LE: $a_{1,1}/F_{P\gamma\gamma}(0) = 0$

$(g-2)_{\mu}$: hadronic light-by-light

However, no experimental data is available

— Use the simplest approximant —

$$P_1^0(Q_1^2,Q_2^2) = \frac{F_{P\gamma\gamma}(0)}{1 + \frac{b_P}{m_P^2}m_P^2(Q_1^2 + Q_2^2) + (2b_P^2 - \frac{a_{1,1}}{a_0})\frac{Q_1^2Q_2^2}{m_P^4}}$$

HE: $a_{1,1}/F_{P\gamma\gamma}(0) = 2b_P^2$; LE: $a_{1,1}/F_{P\gamma\gamma}(0) = b_P^2$; LE: $a_{1,1}/F_{P\gamma\gamma}(0) = 0$

$(g-2)_{\mu}$: hadronic light-by-light

However, no experimental data is available

— Use the simplest approximant —

$$P_1^0(Q_1^2,Q_2^2) = rac{F_{P\gamma\gamma}(0)}{1+rac{b_P}{m_P^2}(Q_1^2+Q_2^2)+2b_P^2rac{Q_1^2Q_2^2}{m_P^4}}$$

HE: $a_{1,1}/F_{P\gamma\gamma}(0) = 2b_P^2$; LE: $a_{1,1}/F_{P\gamma\gamma}(0) = b_P^2$; LE: $a_{1,1}/F_{P\gamma\gamma}(0) = 0$

$(g-2)_{\mu}$: hadronic light-by-light

However, no experimental data is available

— Use the simplest approximant —

$$P_1^0(Q_1^2,Q_2^2) = rac{F_{P\gamma\gamma}(0)}{1+rac{b_P}{m_P^2}m_P^2(Q_1^2+Q_2^2)+(2b_P^2-rac{a_{1,1}}{F_{P\gamma\gamma}(0)})rac{Q_1^2Q_2^2}{m_P^4}}$$

Take $a_{1,1}/F_{P\gamma\gamma}(0) \in \{0 \div 2b_P^2\}$ as a generous estimate (LE vs. HE)

$(g-2)_{\mu}$: hadronic light-by-light

Our Results from Bivariate Padé Approximants

Units of 10^{-10}	π^0	η	η'	Total
$a_{1,1} = 2b_P^2$	6.64(33)	1.69(6)	1.61(21)	$9.94(40)_{stat}(50)_{sys}$
$a_{1,1} = b_P^2$	5.53(27)	1.30(5)	1.21(12)	$8.04(30)_{stat}(40)_{sys}$
$a_{1,1} = 0$	5.10(23)	1.16(7)	1.07(15)	$7.33(28)_{stat}(37)_{sys}$

 $a_{\mu}^{HLbL;P} = (9.94(40)(50) \div 7.33(28)(37)) imes 10^{-10}$

Big uncertainty from double-virtual term often non-considererd High-energies *vs.* Low-energies

To be compared with pseudoscalar-pole contributions in the literature **BPP**: 8.5(1.3); **HKS**: 8.6(0.6); **KN**: 8.3(1.2)

Section 6

$P ightarrow \overline{\ell} \ell$ decays

$P \rightarrow \overline{\ell} \ell$ decays: Introduction

At LO in α_{EM} , this process occurs via 2γ intermediate state.

P. Masjuan, P. Sanchez, In preparation

$P \rightarrow \overline{\ell} \ell$ decays: Introduction

At LO in α_{EM} , this process occurs via 2γ intermediate state.

$$\frac{BR(\pi^0 \to e^+ e^-)}{BR(\pi^0 \to \gamma\gamma)} = 2\left(\frac{\alpha m_e}{\pi m_\pi}\right)^2 \beta_e(m_\pi^2) |\mathcal{A}(m_\pi^2)|^2,$$

$P \rightarrow \overline{\ell} \ell$ decays: Introduction

At LO in α_{EM} , this process occurs via 2γ intermediate state.

$$\frac{BR(\pi^0 \to e^+ e^-)}{BR(\pi^0 \to \gamma\gamma)} = 2 \left(\frac{\alpha m_e}{\pi m_\pi}\right)^2 \beta_e(m_\pi^2) |\mathcal{A}(m_\pi^2)|^2,$$

$$\mathcal{A}(q^2) = \frac{2i}{\pi^2 q^2} \int d^4k \; \frac{q^2 k^2 - (k \cdot q)^2}{k^2 (k - q)^2 ((p - k)^2 - m_e^2)} \mathcal{F}_{\pi \gamma^* \gamma^*}(k^2, (q - k)^2).$$

With normalized $F_{\pi\gamma\gamma}(0,0) = 1$. It diverges if $F_{\pi\gamma\gamma}(k_1^2,k_2^2) = const$.

$P \rightarrow \overline{\ell} \ell$ decays: Introduction

At LO in $\alpha_{\textit{EM}},$ this process occurs via 2γ intermediate state.

$$\frac{BR(\pi^0 \to e^+ e^-)}{BR(\pi^0 \to \gamma\gamma)} = 2\left(\frac{\alpha m_e}{\pi m_\pi}\right)^2 \beta_e(m_\pi^2) |\mathcal{A}(m_\pi^2)|^2,$$

There has ben a lot of activity since the latest experimental result

$$egin{aligned} & {\cal BR}^{{\it KTeV}}(\pi^0 o e^+e^-) = 7.48(38) imes 10^{-8} \ & {\cal BR}^{{\it Th}.}(\pi o e^+e^-) = 6.23(09) imes 10^{-8} \end{aligned}$$

Which represents a 3σ deviation

$P \rightarrow \overline{\ell} \ell$ decays: Introduction

At LO in $\alpha_{\textit{EM}},$ this process occurs via 2γ intermediate state.

$$\frac{BR(\pi^0 \to e^+ e^-)}{BR(\pi^0 \to \gamma\gamma)} = 2\left(\frac{\alpha m_e}{\pi m_\pi}\right)^2 \beta_e(m_\pi^2) |\mathcal{A}(m_\pi^2)|^2,$$

Taking into account last radiative corrections results [hep-ph/1405.6927]

$$egin{aligned} & {\it BR}^{\it KTeV}(\pi^0 o e^+e^-) = 6.87(36) imes 10^{-8} \ & {\it BR}^{\it Th.}(\pi^0 o e^+e^-) = 6.23(09) imes 10^{-8} \end{aligned}$$

Which represents a 1.7σ deviation

$P \rightarrow \overline{\ell} \ell$ decays: Introduction

At LO in $\alpha_{\textit{EM}},$ this process occurs via 2γ intermediate state.

$$\frac{BR(\pi^0 \to e^+ e^-)}{BR(\pi^0 \to \gamma\gamma)} = 2\left(\frac{\alpha m_e}{\pi m_\pi}\right)^2 \beta_e(m_\pi^2) |\mathcal{A}(m_\pi^2)|^2,$$

Very interesting since still no model can reproduce such value and $F_{\pi\gamma^*\gamma^*}(Q_1^2, Q_2^2)$ is an input to HLbL \rightarrow source of uncertainty

Could we help?

$P \rightarrow \overline{\ell} \ell$ decays: Introduction

$$\mathcal{A}(m_{\pi}^2) \approx -17.52i + 30.7 + \int_0^\infty dQ \frac{3}{Q} \left(\frac{m_e^2}{m_e^2 + Q^2} - F_{\pi\gamma^*\gamma^*}(Q^2, Q^2) \right)$$

- Accurate prediction \rightarrow accurate low energy description \rightarrow PA
- Double virtual \rightarrow bivariate PA within considered $a_{1,1}$ range

$P \rightarrow \overline{\ell}\ell$ decays: Results

From our (conservative) estimate $a_{1,1} \in \{2b_P^2, 0\}$, we obtain $BR(\pi^0 \rightarrow e^+e^-) = (6.20 \div 6.41)(5) \times 10^{-8}$

To be compared to current value: (Dorokhov et.al. PRD75 '07) $BR(\pi^0 o e^+e^-) = 6.23(9) imes 10^{-8}$

$P \rightarrow \overline{\ell}\ell$ decays: Results

From our (conservative) estimate $a_{1,1} \in \{2b_P^2, 0\}$, we obtain $BR(\pi^0 \to e^+e^-) = (6.20 \div 6.41)(5) \times 10^{-8}$

To be compared to current value: (Dorokhov et.al. PRD75 '07) $BR(\pi^0
ightarrow e^+e^-) = 6.23(9) imes 10^{-8}$

FURTHER IMPROVEMENT IF DOUBLE-VIRTUAL DATA

We obtain for $a_{1,1} = b_P^2$ with 50% error $BR(\pi^0 \to e^+e^-) = 6.36(5)_{b_{\pi}}(4)_{a_{11}}(6)_{sys} \times 10^{-8} \to 6.36(8) \times 10^{-8}$

Measurement in (0-1)GeV range with interval 0.2GeV and 30% error

BES-III measurements

$P \rightarrow \overline{\ell} \ell$ decays: Results

WHAT IF WE ENFORCE $\pi^0 \rightarrow e^+e^-$ TO EXPERIMENT? Huge impact in *HLBL* (new measurement?)

$P \to \overline{\ell} \ell$ decays: Results

What if we enforce $\pi^0 \rightarrow e^+e^-$ to Experiment?

Huge impact in *HLBL* (new measurement?)

		Publishe	ed Model	Modified Model	
	Model	$\pi^{0} ightarrow e^{+}e^{-}$	HLbL	$\pi^0 ightarrow e^+ e^-$	HLbL
		$(\times 10^{-8})$	$(\times 10^{-10})$	$(\times 10^{-8})$	$(\times 10^{-10})$
JN '09	LMD+V	6.33	6.29	6.47	5.22
Dorokhov '09	VMD	6.34	5.64	6.87	2.44
Our proposal	PA	$(6.20 \div 6.41)$	$(5.10 \div 6.64)$	6.87	2.85
$P \rightarrow \overline{\ell} \ell$ decays

$P \rightarrow \overline{\ell} \ell$ decays: Results

What if we enforce $\pi^0 \rightarrow e^+e^-$ to Experiment?

Huge impact in *HLBL* (new measurement?)

		Published Model		Modified Model	
	Model	$\pi^{0} ightarrow e^{+}e^{-}$	HLbL	$\pi^0 ightarrow e^+ e^-$	HLbL
		$(\times 10^{-8})$	$(\times 10^{-10})$	$(\times 10^{-8})$	$(\times 10^{-10})$
JN '09	LMD+V	6.33	6.29	6.47	5.22
Dorokhov '09	VMD	6.34	5.64	6.87	2.44
Our proposal	PA	$(6.20 \div 6.41)$	$(5.10 \div 6.64)$	6.87	2.85

We aimed for theory error around 1.6×10^{-10} , this is 4×10^{-10} ... !

P. Masjuan, P. Sanchez, In preparation

Section 7

 $\eta - \eta' \text{ mixing}$

$\eta - \eta'$ mixing: Introduction

In an ideal U(3) (large- N_c) chiral world ...

In an ideal
$$U(3)$$
 (large- N_c) chiral world ..

$$\eta = \eta_8 \equiv \frac{1}{\sqrt{6}} \left(u\overline{u} + d\overline{d} - 2s\overline{s} \right), \quad \eta' = \eta_0 \equiv \frac{1}{\sqrt{3}} \left(u\overline{u} + d\overline{d} + s\overline{s} \right)$$

Physical world: $m_s \neq m_{u,d}, \eta_8, \eta_0 \rightarrow \text{mix}$ into the physical η, η'

R.Escirbano, P. Masjuan, P. Sanchez, Phys.Rev., D89, 2014, In preparation

$\eta - \eta'$ mixing: Introduction

In an ideal U(3) (large- N_c) chiral world ...

In an ideal
$$U(3)$$
 (large- N_c) chiral world ..

$$\eta = \eta_8 \equiv \frac{1}{\sqrt{6}} \left(u\overline{u} + d\overline{d} - 2s\overline{s} \right), \quad \eta' = \eta_0 \equiv \frac{1}{\sqrt{3}} \left(u\overline{u} + d\overline{d} + s\overline{s} \right)$$

Physical world: $m_{s}
eq m_{u,d}, \eta_{8}, \eta_{0}
ightarrow {
m mix}$ into the physical η, η'

$$\begin{aligned} -\text{Using the flavor basis} &= \eta_q = \frac{1}{\sqrt{2}} \left(u\overline{u} + d\overline{d} \right), \quad \eta_s = s\overline{s} \\ & \left(\begin{array}{c} \eta \\ \eta' \end{array} \right) = \left(\begin{array}{c} \cos(\phi) & -\sin(\phi) \\ \sin(\phi) & \cos(\phi) \end{array} \right) \left(\begin{array}{c} \eta_q \\ \eta_s \end{array} \right) \end{aligned}$$

R.Escirbano, P. Masjuan, P. Sanchez, Phys.Rev., D89, 2014, In preparation

$\eta - \eta'$ mixing: Introduction

In an ideal U(3) (large- N_c) chiral world ...

In an ideal
$$U(3)$$
 (large- N_c) chiral world ..

$$\eta = \eta_8 \equiv \frac{1}{\sqrt{6}} \left(u\overline{u} + d\overline{d} - 2s\overline{s} \right), \quad \eta' = \eta_0 \equiv \frac{1}{\sqrt{3}} \left(u\overline{u} + d\overline{d} + s\overline{s} \right)$$

Physical world: $m_{s}
eq m_{u,d}, \eta_{8}, \eta_{0}
ightarrow {
m mix}$ into the physical η, η'

$$-\text{Using the flavor basis} - \eta_q = \frac{1}{\sqrt{2}} \left(u\overline{u} + d\overline{d} \right), \quad \eta_s = s\overline{s}$$
$$\begin{pmatrix} F_{\eta}^q & F_{\eta}^s \\ F_{\eta'}^q & F_{\eta'}^s \end{pmatrix} = \begin{pmatrix} F_q \cos(\phi) & -F_s \sin(\phi) \\ F_q \sin(\phi) & F_s \cos(\phi) \end{pmatrix}$$

(only holds (to a good approximation) in flavor basis)

$\eta - \eta'$ mixing: Results

From the mixing, the $pQCD(Q^2
ightarrow \infty)$ and $\chi PT(Q^2=0)$ limits read

$$F_{\eta\gamma\gamma}(0) = \frac{1}{4\pi^2} \left(\frac{\hat{c}_q}{F_q} \cos\phi - \frac{\hat{c}_s}{F_s} \sin\phi \right) \qquad \lim_{Q^2 \to \infty} Q^2 F_{\eta\gamma^*\gamma}(Q^2) = 2(\hat{c}_q F_q \cos\phi - \hat{c}_s F_s \sin\phi)$$
$$F_{\eta'\gamma\gamma}(0) = \frac{1}{4\pi^2} \left(\frac{\hat{c}_q}{F_q} \sin\phi + \frac{\hat{c}_s}{F_s} \cos\phi \right) \qquad \lim_{Q^2 \to \infty} Q^2 F_{\eta'\gamma^*\gamma}(Q^2) = 2(\hat{c}_q F_q \sin\phi + \hat{c}_s F_s \cos\phi)$$

We know them all! But only 3 are independent, we take $\{F_{\eta\gamma\gamma}(0) = 516(18) \text{keV}, F_{\eta'\gamma\gamma}(0) = 4.34(14) \text{keV}, \lim_{Q^2 \to \infty} Q^2 F_{\eta\gamma^*\gamma}(Q^2) = 0.177(15) \text{GeV}\}$

$$F_q = 1.07(2)F_{\pi}, \ F_s = 1.29(16)F_{\pi} \ \phi = 38.3(1.7)^{\circ}$$

$\eta - \eta'$ mixing: Results

From the mixing, the $pQCD(Q^2
ightarrow \infty)$ and $\chi PT(Q^2=0)$ limits read

$$F_{\eta\gamma\gamma}(0) = \frac{1}{4\pi^2} \left(\frac{\hat{c}_q}{F_q} \cos\phi - \frac{\hat{c}_s}{F_s} \sin\phi \right) \qquad \lim_{Q^2 \to \infty} Q^2 F_{\eta\gamma^*\gamma}(Q^2) = 2(\hat{c}_q F_q \cos\phi - \hat{c}_s F_s \sin\phi)$$
$$F_{\eta'\gamma\gamma}(0) = \frac{1}{4\pi^2} \left(\frac{\hat{c}_q}{F_q} \sin\phi + \frac{\hat{c}_s}{F_s} \cos\phi \right) \qquad \lim_{Q^2 \to \infty} Q^2 F_{\eta'\gamma^*\gamma}(Q^2) = 2(\hat{c}_q F_q \sin\phi + \hat{c}_s F_s \cos\phi)$$

We know them all! But only 3 are independent, we take $\{F_{\eta\gamma\gamma}(0) = 516(18) \text{keV}, F_{\eta'\gamma\gamma}(0) = 4.34(14) \text{keV}, \lim_{Q^2 \to \infty} Q^2 F_{\eta\gamma^*\gamma}(Q^2) = 0.177(15) \text{GeV}\}$

$$F_q = 1.07(2)F_{\pi}, \ F_s = 1.29(16)F_{\pi} \ \phi = 38.3(1.7)^{\circ}$$

Then, $\lim_{Q^2 \to \infty} Q^2 F_{\eta'\gamma^*\gamma}(Q^2) = 0.261(10) {\rm GeV},$ we obtained 0.255(4)GeV

$\eta - \eta'$ mixing: Results

From the mixing, the $pQCD(Q^2 \rightarrow \infty)$ and $\chi PT(Q^2 = 0)$ limits read

$$F_{\eta\gamma\gamma}(0) = \frac{1}{4\pi^2} \left(\frac{\hat{c}_q}{F_q} \cos\phi - \frac{\hat{c}_s}{F_s} \sin\phi \right) \qquad \lim_{Q^2 \to \infty} Q^2 F_{\eta\gamma^*\gamma}(Q^2) = 2(\hat{c}_q F_q \cos\phi - \hat{c}_s F_s \sin\phi)$$
$$F_{\eta'\gamma\gamma}(0) = \frac{1}{4\pi^2} \left(\frac{\hat{c}_q}{F_q} \sin\phi + \frac{\hat{c}_s}{F_s} \cos\phi \right) \qquad \lim_{Q^2 \to \infty} Q^2 F_{\eta'\gamma^*\gamma}(Q^2) = 2(\hat{c}_q F_q \sin\phi + \hat{c}_s F_s \cos\phi)$$

We know them all! But only 3 are independent, we take $\{F_{\eta\gamma\gamma}(0) = 516(18) \text{keV}, F_{\eta'\gamma\gamma}(0) = 4.34(14) \text{keV}, \lim_{Q^2 \to \infty} Q^2 F_{\eta\gamma^*\gamma}(Q^2) = 0.177(15) \text{GeV}\}$

 $F_q = 1.07(2)F_{\pi}, \ F_s = 1.29(16)F_{\pi} \ \phi = 38.3(1.7)^{\circ}$

EF('05) Update: $F_q = 1.07(1)F_{\pi}$, $F_s = 1.63(3)F_{\pi}$, $\phi = 39.6(0.4)^{\circ}$ **FK('99):** $F_q = 1.07(2)F_{\pi}$, $F_s = 1.34(6)F_{\pi}$, $\phi = 39.3(1.0)^{\circ}$

$\eta - \eta'$ mixing: light-quarks TFF

From the mixing we can obtain $F_{\eta_q\gamma^*\gamma}(Q^2), F_{\eta_s\gamma^*\gamma}(Q^2)$ TFFs

$$F_{\eta_{q}\gamma^{*}\gamma}(Q^{2}) = F_{\eta\gamma^{*}\gamma}(Q^{2})\cos\phi + F_{\eta'\gamma^{*}\gamma}(Q^{2})\sin\phi$$
$$F_{\eta_{s}\gamma^{*}\gamma}(Q^{2}) = -F_{\eta\gamma^{*}\gamma}(Q^{2})\sin\phi + F_{\eta'\gamma^{*}\gamma}(Q^{2})\cos\phi$$

We expect, up to a charge factor $\hat{c}_q = 5/3$, $F_{\eta_q \gamma^* \gamma}(Q^2) = F_{\pi \gamma^* \gamma}(Q^2)$

Excellent agreement until 6 GeV Asymptotic for light-quarks reached slower than *s*-quarks (VMD)

Section 8

Shopping-list

Shopping-list: experiment-oriented summary

Shopping-list: experiment-oriented summary

 π^0 double virtual transition form-factor $F_{\pi^0\gamma^*\gamma^*}(Q_1^2,Q_2^2)$

- Theory predictions but no exp. results
- Relevant for $\pi^0
 ightarrow e^+ e^-$, $a_\mu^{LbL;\pi^0}~(30\%)$
- What about $\eta, \eta'(\eta_q, \eta_s)$?

Shopping-list: experiment-oriented summary

 π^0 single virtual transition form-factor $F_{\pi^0\gamma^*\gamma}(Q^2)$

- No precise data @ low energies
- Mid-energies: π^0 vs. η_q (1%)
- $(g-2)^{LbL;\pi^0}$ (2%) Low-Mid
- High-Q²: Asymptotics (6%)
- Test approachess: i.e.: DR [arXiv:1410.4691] (2%)

Shopping-list: experiment-oriented summary

 π^0 single virtual transition form-factor $F_{\pi^0\gamma^*\gamma}(Q^2)$

- No precise data @ low energies
- Mid-energies: π^0 vs. η_q (1%)
- $(g-2)^{LbL;\pi^0}$ (2%) Low-Mid
- High-Q²: Asymptotics (6%)
- Test approachess: i.e.: DR [arXiv:1410.4691] (2%)

Shopping-list: experiment-oriented summary

 π^0 single virtual transition form-factor $F_{\pi^0\gamma^*\gamma}(Q^2)$

- No precise data @ low energies
- Mid-energies: π^0 vs. η_q (1%)
- $(g-2)^{LbL;\pi^0}$ (2%) Low-Mid
- High-Q²: Asymptotics (6%)
- Test approachess: i.e.: DR [arXiv:1410.4691] (2%)

Shopping-list: experiment-oriented summary

 $\eta(\eta')$ single virtual transition form-factors $F_{\eta(\eta')\gamma^*\gamma}(Q^2)$

WHY ARE IMPORTANT?

- η precise data @ low energies
- Mid-energies: π^0 vs. η_q (1%)
- $(g-2)^{LbL;\pi^0}$ (2%) Low-Mid
- High-Q²: Asymptotics (4%)
- Mixing; $F_{q\gamma^*\gamma}, F_{s\gamma^*\gamma}$
- Test of QCD running

Shopping-list: experiment-oriented summary

η' Dalitz decay

- Check our prediction at low TL energies
- Sensible to the resonance region (ρ, ω) ; relevant for its $\eta' \to \overline{\ell} \ell$ decays

 $\pi^0
ightarrow e^+ e^-$

• Persistent discrepancy; great impact in $(g-2)^{LbL;\pi^0}_{\mu}$ (10%)

 $\eta
ightarrow \mu^+ \mu^- (e^+ e^-)$

- Minor discrepancy $BR \sim (4.51 \div 4.70) \times 10^{-6}$ vs. $5.8(8) \times 10^{-6}$ Exp.
- (e^+e^-) Never been measured $BR \sim (5.32 \div 5.45) \times 10^{-9}$ vs. $< 5.6 \times 10^{-6}$

 $\eta' \to \mu^+ \mu^-$

 \bullet Never measured, no bounds; estimated $\textit{BR}\sim\mathcal{O}(10^{-7})$

DOUBLE DALITZ DECAYS

 \bullet Double virtuality (investigation with S. Gonzalez-Solis and R. Escribano) i.e. $\pi^0 \to 4e$ at (1%)

Conclusions & Outlook

- TFFs lack a genuine QCD description
- Padé Approximants as a model-independent approximation
- Is data driven: better data, better description; easy to apply
- Many physics involved in this work (shopping-list)
- But not restricted mesons, would be applied to nucleon FFs
- Not time: continuum @ charmonium energies productions
- Improve PAs η' description (go TL) for $\overline{\ell}\ell$ decays
- Deeper study of mixing: large- $N_c \chi PT$ and OZI-violating pars

Meson transition form factors and their applications

Shopping-list

Thanks for your attention

Meson transition form factors and their applications

Backup

Section 9

Backup

Backup

- $\pi^0
 ightarrow e^+e^-$ RC and NP
- Syst error for (g-2) or $\pi^0
 ightarrow e^+e^-$
- Obtaining $V\gamma P$ FFs as Chisholm Residues
- Mixing: degeneracy Eqn. & pQCD & OZI-violation
- *cc* continuum production ?
- *g*_{VPγ} couplings
- QCD matching?
- DPuble Dalitz? Sergi?

Padé Approximants: Convergence properties

I. Meromorphic functions

- Given a meromorphic function f(x) with M poles, P^N_M(x) converges on the complex-plane C as N → ∞ (Montessus th.)
- In general $P_L^N(x)$ converges up to the (L+1)-th pole

Large-
$$N_c$$
 Regge model

$$F_{P\gamma^*\gamma}(Q^2) = \frac{F_{P\gamma\gamma}(0)}{Q^2} \frac{a}{\psi^{(1)}\left(\frac{M^2}{a}\right)} \left(\psi^{(0)}\left(\frac{M^2+Q^2}{a}\right) - \psi^{(0)}\left(\frac{M^2}{a}\right)\right)$$

Padé Approximants: Convergence properties

II. Stieljes functions

• Stieljes:
$$f(x) = \int_0^\infty dt \frac{\rho(t)}{1+xt}; \rho(t) \ge 0 \sim f(x) = \frac{1}{\pi} \int_{s_0}^\infty dt \frac{lm(f(t))}{t+xt}$$

• Given a Stieljes function f(x), $\lim_{N\to\infty} P_{N+1}^N(x) \le f(x) \le P_N^N(x)$ on the complex-plane \mathbb{C} (except for the cut) as $N \to \infty$

Log-function
$$f(x) = \frac{1}{x} Log(1+x) = \frac{1}{\pi} \int_{-1}^{-\infty} dt \frac{Im(f(t))}{(x-t)} = ... = \int_{0}^{1} \frac{dt}{1+xt}$$

Padé Approximants: Convergence properties

II. Stieljes functions

- Stieljes: $f(x) = \int_0^\infty dt \frac{\rho(t)}{1+xt}; \rho(t) \ge 0 \sim f(x) = \frac{1}{\pi} \int_{s_0}^\infty dt \frac{lm(f(t))}{t+x}$
- Given a Stieljes function f(x), $\lim_{N\to\infty} P_{N+1}^N(x) \le f(x) \le P_N^N(x)$ on the complex-plane \mathbb{C} (except for the cut) as $N \to \infty$

Log-function
$$f(x) = \frac{1}{x} Log(1+x) = \frac{1}{\pi} \int_{-1}^{-\infty} dt \frac{Im(f(t))}{(x-t)} = ... = \int_{0}^{1} \frac{dt}{1+xt}$$

Padé Approximants: Convergence properties

II. Stieljes functions

- Stieljes: $f(x) = \int_0^\infty dt \frac{\rho(t)}{1+xt}; \rho(t) \ge 0 \sim f(x) = \frac{1}{\pi} \int_{s_0}^\infty dt \frac{lm(f(t))}{t+x}$
- Given a Stieljes function f(x), $\lim_{N\to\infty} P_{N+1}^N(x) \le f(x) \le P_N^N(x)$ on the complex-plane \mathbb{C} (except for the cut) as $N \to \infty$

Log-function
$$f(x) = \frac{1}{x} Log(1+x) = \frac{1}{\pi} \int_{-1}^{-\infty} dt \frac{Im(f(t))}{(x-t)} = ... = \int_{0}^{1} \frac{dt}{1+xt}$$

Padé Approximants: Convergence properties

II. Stieljes functions

- Stieljes: $f(x) = \int_0^\infty dt \frac{\rho(t)}{1+xt}; \rho(t) \ge 0 \sim f(x) = \frac{1}{\pi} \int_{s_0}^\infty dt \frac{lm(f(t))}{t+x}$
- Given a Stieljes function f(x), $\lim_{N\to\infty} P_{N+1}^N(x) \le f(x) \le P_N^N(x)$ on the complex-plane \mathbb{C} (except for the cut) as $N \to \infty$

Cannot open further Riemann Sheets: No resonance hunting!

Padé Approximants: Convergence Properties

III. Multipoint Padé Approximants

Previous reuslts generalize to N-point expansions, of particular interest:

2-point Padé Approximants

• Well suited if low (i.e. chiral) and asymptotic (i.e. pQCD) expansions are known \rightarrow matching

N-point Padé Approximants

- This implies Pade Approximants as fitting functions converge!
- Particularly their derivatives at some point converge too!
- This is our method to extract information, lets check convergence

Our proposal: Bivariate Padé Approximants

Use bivariate Padé Approximants (Chisholm '73)

$$P_M^N(x,y) = \frac{\sum_{i,j}^N a_{i,j} x^i y^j}{\sum_{k,l}^M b_{k,j} x^k y^l} \xrightarrow{y \to 0} \frac{\sum_i^N a_i x^i}{\sum_k^M b_k x^k} (P_M^N(x)) \quad a(b)_{i,j} = a(b)_{j,i}$$

Again, coefficients from matching the Taylor series

$$P_{M}^{N}(x,y) = \frac{T_{N}(x,y)}{R_{M}(x,y)} = a_{0} + a_{1}(x+y) + a_{1,1}xy + \dots + \mathcal{O}(x^{\gamma}y^{n+m-\gamma+1(+1)})$$

$$P_1^0(x,y) = \frac{a_0}{1 - \frac{a_1}{a_0}(c+y) + \frac{2a_1^2 - a_0a_{1,1}}{a_0^2}xy} = a_0 + a_1(x+y) + a_{1,1}xy + \dots$$

Convergence to meromorphic (Stieltjes?) functions (large- N_c limit) is guaranteed

Our proposal: Bivariate Padé Approximants

Lets revisit the Regge Model

$$F_{P\gamma^*\gamma^*}(Q_1^2, Q_2^2) = \frac{F_{P\gamma\gamma}(0,0)}{Q_1^2 - Q_2^2} \frac{a}{\psi^{(1)}\left(\frac{M^2}{a}\right)} \left(\psi^{(0)}\left(\frac{M^2 + Q_1^2}{a}\right) - \psi^{(0)}\left(\frac{M^2 + Q_2^2}{a}\right)\right)$$

Obeys $P_{N+1}^N(x,y) \le f(x,y) \le P_N^N(x,y)$ (Stieltjes)

Our proposal: Bivariate Padé Approximants

A bigger challenge: cuts $F_{P\gamma^*\gamma^*}(Q_1^2, Q_2^2) = F_{P\gamma\gamma}(0, 0) \frac{M^2}{Q_1^2 - Q_2^2} ln\left(\frac{M^2 + Q_1^2}{M^2 + Q_2^2}\right)$

Obeys $P_{N+1}^N(x,y) \le f(x,y) \le P_N^N(x,y)$ (Stieltjes)

$\eta - \eta'$ -mixing: Results

We used F_P^0 QCD anomaly-driven running; Without it

$$F_q = 1.07(1)F_{\pi}, \ \ F_s = 1.39(14)F_{\pi} \ \ \phi = 39.3(1.3)^\circ$$

Then $\lim_{Q^2 \to \infty} Q^2 F_{\eta' \gamma^* \gamma}(Q^2) = 0.321(12) \text{GeV}$ (compare to 0.255(4)GeV)

- The RGE read -

$$\mu \frac{d}{d\mu} F_0 = -N_F \left(\frac{\alpha_s}{\pi}\right)^2 \rightarrow F_0(\mu) = F_0(\mu_0) \left(1 + \frac{2N_F}{\pi\beta_0} \left(\alpha_s(\mu) - \alpha_s(\mu_0)\right)\right)$$

Implying the modified equations ($F_0(\infty)=F_0(1 GeV)(1+\Delta))$

$$\lim_{Q^2 \to \infty} Q^2 F_{\eta \gamma^* \gamma}(Q^2) = 2 \left(\hat{c}_q \left(1 + (4/5)\Delta \right) F_q \cos \phi - \hat{c}_s \left(1 + 2\Delta \right) F_s \sin \phi \right)$$
$$\lim_{Q^2 \to \infty} Q^2 F_{\eta' \gamma^* \gamma}(Q^2) = 2 \left(\hat{c}_q \left(1 + (4/5)\Delta \right) F_q \sin \phi + \hat{c}_s \left(1 + 2\Delta \right) F_s \cos \phi \right)$$

$\eta - \eta'$ -mixing: Results

The degeneracy equation read

$$F_{\eta\gamma\gamma}\eta_{\infty}+F_{\eta'\gamma\gamma}\eta'_{\infty}=rac{1}{6\pi^2}\left(9+8\Delta
ight)$$

Where $F_{P\gamma\gamma} = F_{P\gamma\gamma}(0,0)$ and $P_{\infty} = \lim_{Q^2 \to \infty} Q^2 F_{P\gamma^*\gamma}(Q^2)$ Data: $0.9(3)\frac{9}{6\pi^2}$ vs. Running: $0.85\frac{9}{6\pi^2} \to OZT$?

- The RGE read -

$$\mu \frac{d}{d\mu} F_0 = -N_F \left(\frac{\alpha_s}{\pi}\right)^2 \rightarrow F_0(\mu) = F_0(\mu_0) \left(1 + \frac{2N_F}{\pi\beta_0} \left(\alpha_s(\mu) - \alpha_s(\mu_0)\right)\right)$$

Implying the modified equations ($F_0(\infty) = F_0(1 GeV)(1 + \Delta))$

$$\lim_{Q^2 \to \infty} Q^2 F_{\eta \gamma^* \gamma}(Q^2) = 2 \left(\hat{c}_q \left(1 + (4/5)\Delta \right) F_q \cos \phi - \hat{c}_s \left(1 + 2\Delta \right) F_s \sin \phi \right)$$
$$\lim_{Q^2 \to \infty} Q^2 F_{\eta' \gamma^* \gamma}(Q^2) = 2 \left(\hat{c}_q \left(1 + (4/5)\Delta \right) F_q \sin \phi + \hat{c}_s \left(1 + 2\Delta \right) F_s \cos \phi \right)$$

$\eta - \eta'$ -mixing: Results

BaBar Coll. obtained deep time-like $q^2 = 112 \text{ GeV}^2$ data.

At least, as
$$Q^2 o \infty$$
, $q^2 |F_{P\gamma^*\gamma}(q^2)| = Q^2 |F_{P\gamma^*\gamma}(Q^2)|$

Neglecting q^2 corrections and assuming asymptotic behavior + duality,

$$\lim_{q^2 \to 112 \text{ GeV}^2} q^2 |F_{\eta(\eta')\gamma^*\gamma}(q^2)| = \lim_{Q^2 \to \infty} Q^2 |F_{\eta(\eta')\gamma^*\gamma}(Q^2)|$$

This way, BaBar obtains

$$\lim_{Q^2 \to \infty} Q^2 |F_{\eta[\eta']\gamma^*\gamma}(Q^2)| = 0.229(30)(8) \ [0.251(19)(8)] \ \text{GeV}$$

To be compared with our extractions

$$\lim_{Q^2 \to \infty} Q^2 |F_{\eta[\eta']\gamma^*\gamma}(Q^2)| = 0.177(15) \ [0.255(4)] \ \text{GeV}$$

$\eta - \eta'$ -mixing: Results

BaBar Coll. obtained deep time-like $q^2 = 112 \text{ GeV}^2$ data.

At least, as
$$Q^2 o \infty$$
, $q^2 |F_{P\gamma^*\gamma}(q^2)| = Q^2 |F_{P\gamma^*\gamma}(Q^2)|$

Neglecting q^2 corrections and assuming asymptotic behavior + duality,

$$\lim_{q^2 \to 112 \text{ GeV}^2} q^2 |F_{\eta(\eta')\gamma^*\gamma}(q^2)| = \lim_{Q^2 \to \infty} Q^2 |F_{\eta(\eta')\gamma^*\gamma}(Q^2)|$$

$c\overline{c}$ continuum production

• As
$$q^2 o \infty$$
 $F_{P\gamma^*\gamma}(q^2) \equiv F_{P\gamma^*\gamma}(-Q^2)$

- If holds at large but finite but large q², use our parametrization
- Test duality ideas

$$\sigma(e^+e^- o P\gamma) = rac{2\pi^2lpha^3}{3}(F_{P\gamma^*\gamma}(s,0))^2\left(1-rac{m_P^2}{s}
ight)$$

Dominates respect to $J/\Psi
ightarrow P\gamma$

