Production of 1++ States at Electron Positron Colliders

Achim Denig, Zhiqing Liu, Martin Ripka

SFB Seminar KPH Mainz 2014

Dec. 15, 2014

- Introduction
- Search for the X(3872) in e^+e^- annihilation
- Search for the χ_{c1} in e^+e^- annihilation
- Summary

Electron Positron Colliders

- Which quantum numbers can be produced in an e^+e^- annihilation?
- Direct production in e^+e^- collision:
 - $C|e^+e^->=|e^-e^+>=-|e^+e^->$ (similar for parity)

• Spin:
$$\frac{1}{2} \otimes \frac{1}{2} = 0 \oplus 1$$

- Accessible J^{PC} quantum numbers in direct annihilation:
 - Singlet: 0⁻⁻ no gauge boson coupling available
 - Triplet: $1^{--} \longrightarrow$ virtual photon / vector meson dominance

3/32

The R-Ratio

•
$$R = \frac{\sigma(e^+e^- \rightarrow hadrons)}{\sigma(e^+e^- \rightarrow \mu^+\mu^-)} = 3\sum_q e_q^2$$

- Many 1^{--} states can be produced in e^+e^- annihilation
- Only vector states seen here!

BEPCII

- Operating at BEPCII (Beijing)
- $\sqrt{s} = 2 4.6 \text{ GeV}$
- $\mathcal{L}=8.04 imes10^{-32}~(pprox85\%$ of the design Luminosity)

courtesy of R. Mitchell, Indiana Univ. JPC

 Similar to hydrogen/positronium spectroscopy!

- Spectrum of charmonium states
- unexpected states "XYZ"
- Great hunt for charmonium states at LHCb, Babar, Belle, CLEO and BESIII

Recently Discovered

 e^+e^- (at 4260 MeV) $\rightarrow \pi^+\pi^- J/\psi$ at BESIII

- *Z_C*(3900) is Charged!
- Also neutral partner observed
- Can not be pure *cc* state
- $\bullet~$ Mass: 3899.0 \pm 3.6 \pm 4.9 MeV
- $\bullet~$ Width: $46\pm10\pm20\,MeV$
- Many other similar states found

 $e^+e^- \rightarrow \gamma(\pi^+\pi^- J/\psi)$ at BESIII

- X(3872) observed at BESIII
- radiative decay
- connection between XYZ

Properties of X(3872)

- First observed by Belle in 2003
- Confirmed by many other exp.
- Very narrow (< 1.2 MeV)

•
$$J^{PC} = 1^{++}$$
 (LHCb)

- Mass close to $D\overline{D}^*$
- Important decay channels: $D^0\overline{D}^*\pi^0 ~>~ 32\%$

$$\gamma\psi(2S)$$
 > 3.0%

$$ho J/\psi > 2.6\%$$

- $\omega J/\psi$ > 1.9%
- No charged partners!
- Exotic?

Physical Motivation

• What is the substructure of X(3872)?

- Electronic width: $\Gamma_{ee} \sim \sigma(e^+e^- \leftrightarrow X(3872)) \sim |\psi(0)|^2$
- Electronic width of X(3872) strongly depending on its substructure
- Theoretical predictions under construction
- More precise value of electronic width may rule out some models for structure

Technique of Analysis I

- X(3872) is not a vector resonance, it has $J^{PC} = 1^{++}$
- **Problem:** X(3872) can not be produced in an e^+e^- annihilation
- Trick: production via box diagram (Highly suppressed)

- Never observed 1^{++} state in e^+e^- collision
- $\mathcal{L}_{int} \approx 3 \, \text{fb}^{-1}$ data in total at 4.009 GeV, 4.23 GeV, 4.26 GeV and 4.36 GeV
- Problem: No data at 3.872 GeV
- Solution: Initial State Radiation

ISR Technique I

• e^- or e^+ can radiate a photon before collision

- \bullet Emission of ISR photons is suppressed by α/π
- Center of mass energy for collision reduced
- Acceptance of BESIII calorimeter: $|\cos \theta| \le 0.93$
- Two analysis modes: ISR tagged, ISR untagged

ISR Technique II

Tagged Analysis

- $J/\psi\pi^+\pi^-$ reconstructed
- ISR photon measured
 ⇒ All particles detected

Untagged Analysis

- \bullet only $J/\psi\pi^+\pi^-$ reconstructed
- predict 4-momentum of ISR photon by demanding 4-momentum conservation

ISR untagged mode to avoid background from radiative decay $e^+e^- \rightarrow Y(4260) \rightarrow \gamma X(3872)$

Technique of Analysis II

• Decay mode:

$$e^+e^- \longrightarrow X(3872)\gamma_{ISR} \longrightarrow \pi^+\pi^- J/\psi\gamma_{ISR}$$

 $\longrightarrow \pi^+\pi^-\ell^+\ell^-\gamma_{ISR}$, $\ell = \mu, e$

• Relation between radiative cross section and non radiative cross section

$$\frac{d\sigma_{X\gamma}}{dm} = \frac{2m}{s}W(s,m)\sigma_X(m)$$

The **BESIII** Detector

- Superconducting solenoid
- Drift chamber
- Time of flight detector
- Calorimeter
- Muon chamber
- Operating at BEPCII (Beijing)
- $\sqrt{s} = 2 4.6 \text{ GeV}$

J/ψ Reconstruction

- Pions and leptons are well separated by momentum
- Cut: pions p < 0.6 GeV

4.230 GeV

J/ψ Reconstruction

- Pions and leptons are well separated by momentum
- Cut: pions p < 0.6 GeV

4.230 GeV

Mass Spectrum at Small Angles (Untagged Mode) I

- $|\cos heta_\gamma| > 0.95$
- No X(3872) peak observed

Mass Spectrum at Small Angles (Untagged Mode)II

• Fit: double Gaussian for $\psi(2S)$ + Gaussian for X(3872) + linear for background

Cross check at Large Angles (Tagged Mode)

- These are no ISR events, but $Y(4260) \rightarrow \gamma X(3872)$ events
- $19 \pm 0.9 \ X(3872)$ events observed by direct count
- In agreement with $e^+e^- \rightarrow \gamma X(3872)$ measurement from BESIII, PRL 112, 092001

Calculation of Γ_{ee}

Number of observed X(3872) given by:

$$\frac{dN_A^{\text{obs}}}{dx} = \mathcal{L}\varepsilon_A W(s, x) \sigma^A(m(s, x)) \mathcal{B}(A \to f)$$
$$\Rightarrow N_A^{\text{obs}} = \varepsilon_A \mathcal{L} \Gamma_{ee}^A \mathcal{B}(A \to f) I_A$$

• for
$$A = X(3872), \psi(2S)$$
.

• ε_A is the reconstruction efficiency

•
$$I_A = \int b_A(m(s,x))W(s,x)dx$$
 , $x = 1 - m^2/s$

- W(s, x) is the radiator function
- $b_A(m)$ is the relativistic Breit-Wigner function over Γ^A_{ee}

$$\Gamma^{A}_{ee} = \frac{N^{obs}_{A}}{\mathcal{L}\varepsilon_{A}I_{A}\mathcal{B}(A \to \pi^{+}\pi^{-}J/\psi)\mathcal{B}(J/\psi \to \ell^{+}\ell^{-})}$$

Electronic Width of the $\psi(2S)$

•
$$\Gamma_{ee}^{\psi(2S)} = \frac{N_{\psi(2S)}^{\text{obs}}}{\mathcal{L} \varepsilon I \mathcal{B}(\psi(2S) \to \pi^+ \pi^- \ell^+ \ell^-)}$$

- Number of events under double Gaussian
- Branching fractions for $\psi(2S)$ from PDG
- *L* is Luminosity of data at each energy point

E_{CM} [GeV]	$N^{obs}_{\psi(2S)}$	$I_{\psi(2S)}\left[{ m pb/keV} ight]$	$arepsilon_{\psi}(2S)$	$\Gamma^{\psi(2S)}_{ee}[eV]$
4.009	4108 ± 45	310.48	0.308	2273 ± 28
4.230	4982 ± 82	172.37	0.291	2317 ± 41
4.260	3512 ± 35	161.46	0.291	2304 ± 26
4.360	1828 ± 51	133.23	0.289	2237 ± 65

Luminosity weighted average

$$_{ee}^{-\psi(2S)} = 2291 \pm 25$$
(stat) ± 101 (sys) eV $\,$, PDG: 2350 \pm 40 eV

Log Likelihood Scan for 90 % C.L.

E_{CM} [GeV]	σ_{N_3}	$\Delta \Gamma_{ee,1} \mathcal{B}[eV]$	$\Delta \Gamma_{ee,2} \mathcal{B} [eV]$
4.009	3.48	0.290	0.299
4.230	1.28	0.123	0.125
4.260	1.41	0.197	0.201
4.360	1.00	0.273	0.287

Combining the Four Measurements

- Summing up the single log likelihoods and take exponential
- $N_3^{\text{tot}} = 1.63$ at 90% of the integral

•
$$\Gamma_{ee}^{X} \mathcal{B} = \frac{N_{3}^{\text{tot}}}{\mathcal{B}(X(3872) \to f) \sum_{i} \varepsilon_{i}^{X(3872)} \mathcal{L}_{i} I_{i}^{X(3872)}} = 0.101 \, \text{eV}$$

Systematic Errors

source	$\sigma_{sys}^{X(3872)}$ [%]	$\sigma_{\rm sys}^{\psi(2S)}$ [%]
Luminosity	1.0	1.0
Tracking	4.0	4.0
J/ψ mass window	0.2	0.2
Branching ratios	1.4	1.4
Background model	0.027	0.027
X(3872) width	2.7	-
ISR simulation	3.4	0.5
$\psi(2S)$ fit model	0.69	-
Total	6.2	4.2

$$\begin{split} \Delta \Gamma_{ee}^{\psi(2S)} &= 101 \, \text{eV} \,, \\ \Delta \Gamma_{ee}^{X(3872)} &= 0.005 \, \text{eV} \,, \end{split}$$

Final Result for X(3872)

Preliminary Results

$$\begin{split} & \Gamma_{ee}^{X(3872)} \Gamma_{\pi^+\pi^- J/\psi}^{X(3872)} / \Gamma_{tot} < 0.106 \, \text{eV} \qquad \text{at} \quad 90\% \, \text{C.L.} \\ & \Gamma_{ee}^{\psi(2S)} = 2291 \pm 25(\text{stat}) \pm 101(\text{sys}) \, \text{eV} \end{split}$$

- PDG: $\Gamma_{ee} < 280 \, eV$ Yuan , $\Gamma_{ee} \Gamma_{\pi^+\pi^- J/\psi}/\Gamma_{tot} < 6.2 \, eV$ Aubert
- Assuming $\mathcal{B}(X(3872) \to \pi^+\pi^- J/\psi) < 6.6\%$ yields $\Gamma_{\text{ee},1}^{X(3872)} < 1.61 \text{ eV}$ at 90% C.L.
- Improvement by 2 orders of magnitude
- Theoretical calculation predicts: $\Gamma_{ee}^{X(3872)} \approx 0.03 \text{ eV}$ A. Denig, F. -K. Guo, C. Hanhart, A. V. Nefediev Phys. Lett. B **736** (2014) 221
- Waiting for more theoretical calculations

Is there another $J^{PC} = 1^{++}$ state in the charmonium spectrum?

Properties of χ_{c1}

- First observed 1977 by **Biddic** et al.
- Confirmed by many other exp.
- Mass: 3.51 GeV
- Very narrow (0.84 MeV)

•
$$J^{PC} = 1^{++}$$

- Mass close to $D\overline{D}^*$
- Important decay channels:

 $\gamma J/\psi$ 34%

 $\rho \pi \pi$ 1.9%

Γ_{ee} = 0.46 eV (VMD model)
 J. Kaplan, H.Kühn, PLB78 (1978) 252

Search for $e^+e^- \longrightarrow \chi_{c1}\gamma_{ISR}$ I

- Analysis similar to X(3872) case
- Decay mode:

$$e^{+}e^{-} \longrightarrow \chi_{c1}\gamma_{ISR} \longrightarrow J/\psi\gamma\gamma_{ISR}$$
$$\longrightarrow \mu^{+}\mu^{-}\gamma\gamma_{ISR}$$

- Dominating background: $e^+e^- \longrightarrow \mu^+\mu^-\gamma_{ISR}$ (well known!)
- Analysis performed by Benedikt Kloss

Search for $e^+e^- \longrightarrow \chi_{c1}\gamma_{ISR}$ II

- Some indication for χ_{c1} signal!
- Statistics too small

Future χ_{c1} Search

- Proposed to take $\approx 400 pb^{-1}$ data in three Energy points on and around χ_{c1} mass
- Directly analyse resonant χ_{c1} production $e^+e^- \longrightarrow \chi_{c1} \longrightarrow J/\psi\gamma \longrightarrow \mu\mu\gamma$
- \bullet Interference between χ_{c1} and $\mu\mu\gamma$ needs to be considered
- Expected statistical significance of discovery will depend on sign of the interference
- Proposal accepted by the BESIII collaboration
- Data taking in spring next year

Summary

- Only $J^{PC} = 1^{--}$ states can be produced directly produced in e^+e^- annihilations
- $J^{PC} = 1^{++}$ states can be produced via a box diagram
- The ISR method gives access to resonances below the center of mass Energy
- $\Gamma_{ee,1}^{X(3872)} < 1.61 \,\text{eV}$ at 90% C.L.
- World's so far best limit improved by 2 orders of magnitude
- Data taking next year to directly see the χ_{c1}
- We hope to discover a 1++ state produced in e^+e^- annihilation soon!

Thank you for your attention!