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Similarly, by  s-t crossing one obtains a process
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Singularities of B amplitude for fixed t- variable.
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Application of fixed t analyticity of invariant amplitudes in PWA



- One of the main problems of SE PWA are ambiguities 
ie more sets of partial waves equally well describe experimental data.

- First attempt: Requiring smoothnes of IA as a function of energy. 
It was shown that it was not enough.

- One must impose more stringent constraints taking 
into account analayticity of scattering amplitudes.

- In this lecture:
We demonstrate how the  fixed-t analyticity 
can be used for that purpose.

We shall apply two methods:

- Fixed-t dispersion relations
- Analytic approximations theory

J. E. Bowcock and H. Burkhardt
Rep. Prog. Phys. 38 (1975)1099
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Partial wave expansion of            invariant amplitudes N 
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- One of the main problems of single energy PWA (SE PWA) are ambiguities 
i.e. more sets of partial waves equally well describe experimental data.

- First attempt: Requiring smoothnes of IA or partial waves as a function of energy. 
It was shown that it was not enough.

- One must impose more stringent constraints taking 
into account analyticity of scattering amplitudes.

- In this lecture:
We demonstrate how the  fixed-t analyticity 
can be used for that purpose.

We shall apply two methods:

- Fixed-t dispersion relations (DR)
- Analytic approximation theory

J. E. Bowcock and H. Burkhardt
Rep. Prog. Phys. 38 (1975)1099

Application of the fixed-t analyticity of Invariant amplitudes to
partial wave analysis (PWA)



Singularities of B amplitude for fixed t- variable.
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Fixed-t dispersion relations 

Let’s consider DR fulfilled by a typical  isospin even ( odd  )             invariant amplitude 
(IA) :

- Suppose that results from SE PWA are available in the range
and smoothly interpolated ( using spline interpolation for instance).

- Dispersion relations may be written in the form:

describes unknown  contributions from high energies and is called   
discrepancy function (DF).
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- Solving last equation for        ( dropping variable t from the list of variables), and using known values of

we obtain:

where PVI stands for principal value integral.

- may be approximated by a polynomial of maximal order two !

- Accurate determination of the high energy contributions is a big advantage of this method.

- Using parametrized          in DR (*) one obtains a smooth  real part of the amplitude 
.

- Discribed method, called Discrepancy function method, may be used to make accurate 
analytic continuation of IA outside of the physical region.
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How tu use DF method  as a constraint in PWA?

1. Suppose results of SE PWA are available in energy region

2. In PWA program minimize:
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:angles  at measured  observable an for  where

In DF method, one may constrain only a 
real part  of the amplitude. One expects 
that the data will  make a right choice of  
imaginary  parts of   partial waves.

In elastic region of  πN scattering DF 
method was  applied as a strong 
constraint because real  and imaginary 
parts can be derived from eah other due 
to unitarity of partial waves.

3.     After finishing PWA part, repeat 
step 1. Carry out the iteration until   
achieving a reasonable agreement  
between input and output  values .



Problems with applying DR as a constraint:

- Errors of PW are generally strongly correlated and are usually not published.
- It is not clear how to calculate errors of PVI. 

Small changes in the input part can lead to a large change in the output real part.

But:
- DR can serve as an simple test of compatibility of PW with the fixed- t analyticity.

Too noisy PW (non smooth DF- higher order polynomials needed to describe
DF) are indicator that SE PWA solution is not consistent with FT analyticity of
scattering amplitudes.



Analytic approximation theory

Fixet-t analyticity of scattering amplitudes can be imposed without 
using of DR.  Invariant amplitudes can be  obtained from the data directly. 
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Digression - Conformal mapping  method
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