General properties of scattering matrix- S- matrix

Scattering process a+b— c+d is represented by diagram

Out of four 4 -momenta we candefine threelorentzinvariant quantities :

P, of s=(p,+ pp)° =W’
t=(pa_pc)2
C) Uu=(p,+pg)°
S+t+u=2

Z=mZ+m:+m?+m;]
P, P, Inscattering theory it is shown thatone hastoconsider
additional processes (channels) obtained by socalled crossing operation:
atc—>b+d
atd—>c+b



Scattering isdescribed by a scattering matrix-S matrix:

(f[S]i)=6y —(27)"i-8(p; - py X F[T]i)

S —matrixisunitary: S*S = 1,whatgives: T-T* =iT"T

(T =T7]i) = (F[T]i)— (£ T 7[i) = (27)° Z T n){n[Ti)-8Cp; = py )

2Im(f[T|i)=(2x)" Z T*In)}n([T|i)-8(p; — p, )—unitarity relation

Im>( = ;"H.<: ¥ >.::.<:

m{f[T|i)=0 ifs=s, <(m;+m,)>,

wherem, and m, aremasses of thelowest intermediate state.



7z N scattering

at P S=(Q1+p1)2=W2
42 P, t=(q,—0, ) s+t+u=2=2m’+2m’
O u=(g,-p,)
In =N scattering, transition matrix T isgiven in termsof two invariant amplitudes
A(s,t,u) and B(s,t,u):
d, P1 1 3
T'(stu)=—=A'(s,t,u)+i(g, +q,) y*B', wherelstands forisospin,|= = ,~
ﬂ'+ P u 2 2
Schannel Using crossing operation, we obtain another two channels:
nt p T p
P
Q@ P s=(p,—0,)°

@ S—U crossing O T t=(q,—0, ) unchanged

u=(-q, - p2)2 = (p, +q1)2 =W5
o & ~ Py

+ —

V4 ) - .
uchannel



Similarly, by s-t crossing one obtains a process

P p
- P, P, s=(0;—0,)
t=(0,+0,)* =w;

O u=(q,-p,)’

q1 =0,

2

Crossing symmetry.

In S-matrix theory it is shown:

Processes obtained by crossing operation are described
by the same T matrix (Invariant amplitudes) :

A, (s,t,u)= A _(ut,s)

B,(s,t,u)=B_(u,t,s
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Mandelstam Hypothesis applied to z#NV scattering
Thez N Invariant amplitudes are analytic functions of complex variables s,tand u.

All singularities occure at the real values of variables s, t,U.
Singularities are these derived from unitarity in s,t and uchannels:

i) Cats starting at energy squared corresponding to mass squared of

the lowest intermediate state in unitarity relation for a given channel.

For Aamplitudes :

(Mm+m_)’<s<ow s-channel cut
(M+m_) <u<o u-channel cut
4m> <t<oo t-channel cut

In addition to cuts present in amplitude A, invariant amplitude B
has two poles

atu=m?andat s=m?.

ii)Physical amplitudes are obtained by approaching cuts from above:

A(s,t,u)= Iirrg)A(s+ig,t,u)
A,(s,t,u)= Iirrg)A(u+ie,t,u)

A(s,t,u)=limA(t+ig,t,u)
e—>0



iii) Due tounitarity relations, Invariant amplitudes arerealbelow
thresholdsin allthree channels.
Invariant amplitudes arereal analytic functions withdiscontinuities across the cuts:
A(s+ig,t,u)— A(s—1lg, u)=2i-ImA(s+igtU)
Au+igt,s)—A(u—igt,u)=2i-ImA(U+igts)
Alt+ig,s,u)—A(t—1gs,u)=2i-ImA(t+1g5s,u)

In practical applications one of the variables is kept constant so that
the amplitudes are functions of only one variable.

Important case is t =const



Singularities of B amplitude for fixed t- variable.

Left hand cut 2-m* —t m? Right hand cut B(s+ig,t)
B(u+ig,t,s)=B(s—ie,t,s) /;Sth =(m+m_)°
s—u

It is more practical tu use so called crossing variable variable v = m
S-u crossing implies sign change v —» —v .
In a complex \/ plane aplitude B has analytical structure shown in dawing.




Inapplications it is convenient to work with so called isospineven

and odd amplitudes :
A* =%(A_ +A,) B* =%(B_ +B,),

Under s -ucrossing these amplitudes behave as :
ASi(S’t’u)=iAui(u1tis)1 Bsi(s,t,U)=$Bui(u,t,S),

Invariant amplitude C defined as:

CH(v,t)=A%(v,t)+ B*(v,t)

1-—

Am?



Application of fixed t analyticity of invariant amplitudes in PWA



One of the main problems of SE PWA are ambiguities
ie more sets of partial waves equally well describe experimental data.
First attempt: Requiring smoothnes of IA as a function of energy.

It was shown that it was not enough.

J. E. Bowcock and H. Burkhardt
One must impose more stringent constraints taking Rep. Prog. Phys. 38 (1975)1099

into account analayticity of scattering amplitudes.
In this lecture:

We demonstrate how the fixed-t analyticity

can be used for that purpose.

We shall apply two methods:

Fixed-t dispersion relations
Analytic approximations theory



Singularities of B amplitude for fixed t- variable.
Left hand cut X-m® —t m? Right hand cut B(s+ig,t)

— —— E—
\ Real / /‘;th=(m+m7z)2

B(u+ig,t,s)=B(s—-lie,t,s)

. . . : . sS—u
It is more practical to use so called crossing variable variable v=——

. . . 4.
s-u crossing implies sign change V — —V.. m
In a complex V plane aplitude B has analytical structure shown in a drawing.




Inapplications it is convenient to work with so called isospineven

and isospin odd amplitudes:
A* =%(A_ +A) B* =%(B_ +B,).

A" =%(Al/2 + ZAS/Z), A° =%(A1/2 _ As/z)

Under s-uU crossing these amplitudes behave as:

Al(s,t,u)=%2A(u,t,s), BI(s,t,u)=FBI(u,t,s),

In most cases invariant amplitudes C* defined as:

C*(v,t)=A%(v,t)+ B*(v,t)

t
4m?*
are used instead of amplitudes A*.

1



Partial wave expansion of 7z N invariant amplitudes

In numerical calculations onestarts with amplitudes f,and f, which
are simply related to partial wave amplitudes (partial waves):
1 :
f,(s,cos6)= aZ{T(I—1)+(S )= T41)-(8) }PI (Cosé)
1=1
1 0 0)

fz(S’C059)=aZ{Tl—(S)—TH(S) } P, (cos®)

Invariant amplitudes A and B are related to amplitudes f, and f,

in the following way:
E =Energy of protonin CMS

A V\/+mf \N—-mf —— .
= - = [otalener 18]

Ar E+m ' E-m ° | &Y

B fl f2 M =nucleon mass

4n_E+m_E—m



Application of the fixed-t analyticity of Invariant amplitudes to
partial wave analysis (PWA)

One of the main problems of single energy PWA (SE PWA) are ambiguities

i.e. more sets of partial waves equally well describe experimental data.

First attempt: Requiring smoothnes of IA or partial waves as a function of energy.
It was shown that it was not enough.

One must impose more stringent constraints taking
into account analyticity of scattering amplitudes.
In this lecture:

We demonstrate how the fixed-t analyticity

can be used for that purpose.

We shall apply two methods:

Fixed-t dispersion relations (DR)
Analytic approximation theory

A 4

J. E. Bowcock and H. Burkhardt
Rep. Prog. Phys. 38 (1975)1099




Fixed-t dispersion relations

Singularities of B amplitude for fixed t- variable.

Left hand cut X-m® —t m? Right hand cut B(s+ig,t)
— X3 ,\/, /—2

B(u+ie,t,s)=B(s—ie,t,s) Real Sp=(M+m_)
s—u

It is more practical to use so called crossing variable variable v = m
s-u crossing implies sign change V — —V
In a complex V plane aplitude B has analytical structure shown in a drawing.

V=M, +—
. th T 4m
] (t-2m, )’
X X ] Vo=t
—Vy, VB Vg Vin



Fixed-t dispersion relations

Let’s consider DR fulfilled by a typical isospin even (odd ) z N invariant amplitude
(1A) :
1 1
ReF*(v,t)=F(v,t)+= jdv ImF*(V t)( J
s V=V V'+V)

F\ -contribution from nucleon pole

Suppose that results from SE PWA are available in the range Vi, <V <V

and smoothly interpolated ( using spline interpolation for instance).
Dispersion relations may be written in the form:

H. Nielsen, Nucl. Phys., B30 (1971) 317
Vh B33 (1971) 152
1 1 1 :
ReFi(v,t)=FN(v,t)+—I dv’ ImFi(v',t) + —— H. Nielsen, G.C. Oades,
T V=V V'+V ) Nucl. Phys., B49 (1972) 573
Vih B49 (1972) 586
1 1
+= jdv ImF*(V t)( j
V=V V'4V)

ReF*(v,t)=Fy(v,t)+= Idv ImF*(v t)( iv vjv)]-l_AF(V’t) (1)———

J. Hamilton, J. L. Petersen in

New developments in dispersion
theory Vol. 1,

Nordita, Copenhagen 1975

A-(v,t) describes unknown contributions from high energies and is called
discrepancy function (DF).




Solving last equation for A¢ ( dropping variable t from the list of variables), and using known values of

ReF*(v, ),Fi(v,)and PVI(v,)

we obtain:
A (v )=ReF*(v, )—Fi(v)—PVI(v,),

where PVI stands for principal value integral.
A may be approximated by a polynomial of maximal order two !
Accurate determination of the high energy contributions is a big advantage of this method.

Using parametrized Ag in DR (*) one obtains a smooth real part of the amplitude
Re F

Discribed method, called Discrepancy function method, may be used to make accurate
analytic continuation of IA outside of the physical region.
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How tu use DF method as a constraint in PWA?

1. Suppose results of SE PWA are available in energy region

2.

Wy, < W < W, correspondingtoVvy, <V <V,
Evaluate Re Ifk(k = 1,4 standfor fourIA)insmallsteps of t (say n)

overa range 0 <t <-2q°(-1<cos@ <1),whereq isapion

momentum in CMS.
In PWA program minimize:

Zz =l§ata +Z|§T
where .. foranobservable D measuredat N angles:
2
2 e Dexp(ek)_DPW(ek)
Adata = Z A ,
k=1 k

where Dg,, isa value of measurable quantity D calculated

from partial waves which are parameters in a fit.

Aterm yZ. has a form:

gkj

A 2
lerT =ii (Re Fk(tj )_FkPW(tj )
k=1j=1

3. After finishing PWA part, repeat
step 1. Carry out the iteration until
achieving a reasonable agreement
between input and output values .

In DF method, one may constrain only a
real part of the amplitude. One expects
that the data will make a right choice of
imaginary parts of partial waves.

In elastic region of mN scattering DF
method was applied as a strong
constraint because real and imaginary
parts can be derived from eah other due
to unitarity of partial waves.




Problems with applying DR as a constraint:

- Errors of PW are generally strongly correlated and are usually not published.
- Itis not clear how to calculate errors of PVI.
Small changes in the input part can lead to a large change in the output real part.

But:
- DR can serve as an simple test of compatibility of PW with the fixed- t analyticity.

Too noisy PW (non smooth DF- higher order polynomials needed to describe
DF) are indicator that SE PWA solution is not consistent with FT analyticity of
scattering amplitudes.




Analytic approximation theory

Fixet-t analyticity of scattering amplitudes can be imposed without
using of DR. Invariant amplitudes can be obtained from the data directly.

This part of lecture is based on:
Consider anamplitude F (v ) which has the following properties :
J. Hamilton, J. L. Petersen in
New developments in dispersion
theory Vol. 1,

Nordita, Copenhagen 1975

A 4

1) F(V)isrealanalytic functioninthe complex v plane cutalong
(Vin, + 0)
i) F(v) isbounded through v plane

Let's start with the simplest case when experimentalinformationon therealand E. Pietarinen, Nuovo. Cim. 12 (1972) 522

imaginary parts are available at a finite number of points. Nucl. Phys. B49 (1972) 315

i) Assume thatrealparts of F(v) hasbeen'measured' atM points ) Nucl. Phys B107(1976) 21,
end references there

V...,V giving values f,,..., f,, and corresponding errors g, ,...,&, -
Il ) Assume that theimaginary part F(v) hasbeenmeasuredattheN-M

pointsV,,,,...,Vygiving values f,,.,,..., f andcorresponding errors

Epat €N -

Inmost problems we have dataon| F(V)\Zor some other

bilinear combinations.




Finding optimal approximant

Let @ (V) isananalytic function with the analytic properties similar to F(V).
Our task is following :
Find optimal approximant ¢ for the given dataon F.

We proceed inastandard way ( The method of least squares):

zz((o):Z(Reqo(zk)—fkj . (lmqo(vk)—fkj

K k=M +1 Ey

There areinfinitely many functions giving ;(2 =0.
Ingeneral, they will be extremely unsmooth outside the dataregion.
Such functions areunacceptable candidates for aphysical amplitude.

We want approximant to be smooth and look for optimal approximant

which is the'smoothest' function that hasanacceptable 7.

We define ameasure @ (¢ ) of 'lack of smoothness' of the approximant ¢.
@ (@ ) iscalled the penalty function or the convergence test function.
The optimal approximant is defined to be one that minimizes :

X?=2%(9)+@(p)




Digression - Conformal mapping method

Suppose we havea complex function which is analytic z - plane
in Z plane except the cuts showninthe figure.

Conformal mapping :

,_ [p(a-2) | x x P 3y
a(b+z) 0

W=
14 [0(a=2)
a(b+z)
maps the cut z -plane into and on theunit circle as shown w-plane
inthe figure. /
One canexpand function f(z) in a power seriesinw about -1 +

- 0
the origin inw plane: w(-b) \k,‘\ w(a)

f(z)=icnwn.
n=0

If afunctionisbounded, thenpower series converge on the

unit circle. ltmeans that expansion represents function f(z) W. R. Fraser, Phys. Rev 123 (1961) 2180

See also example on page 567 in:
Thepower seriesinw generally converge more rapidly ——— C. B. Lang, N. Pucker, Mathematische Methoden in der Physik,
thanthe ordinary power seriesinz. 2nd Ed., Springer Spektrum, Berlin 2005.

inawhole cut z-plane.




Conformalmapping :

@V —V
S a+ v, -V

maps the cut v plane tointerior and onto theunitcircle.

a real>0

Any functionbounded inVv plane may berepresented by

Taylor series converging inside and on the unit circle \ Z \= 1:

o(V)=p(2)=Yaz".

Using arguments from probability theory, Pietarinen has
proposed a penalty functioninthe form:

— 3,42 *
¢(¢)_l‘nz=o(n+1) a,, ( ) Z(vn)
where A isarealscaling parameter.
It canbe shown that coefficients a, are strongly suppressed: o0 z (Vtrl)
als N\ B
n2-.2a
Expansion (*)may be truncatedat the finiteorder N, . 7=1

Minimizing X % isacompromise between fitting
the dataand keeping coefficientsin @ (@ )small.




Minimizing X2

Using expansion for @ (V) and aformulafor penalty function @, X 2((o ) may be writtenin the form:

Minimizing X° N
M f max
X2(p)= Z(;mzlamaa Z(; 2 EH D (1+1)%/
where
- Re(zl'() Re(z{(“) L Im( ) Im(zk)
5 _i f, Re!z,'( )_I_i f, Im!zu
| _k=1 & = &
aXZ( ) N max
6a|¢ = 2. ZA,mam+ZB +1- 2(I+1)a, =0 1=0,.,N__

Coefficients of thebest approximant are solution of aset of linear equation
writteninamatrix form:

(A+iD)-a=B

The error matrix E isinverse of (A+ /1D) )

E=(A+iD)".

Errors of coefficients 3, :

Aa, =./E

nn




Determination of the scaling parameter A

According to Pietarinen, scaling parameteris given by formula:

—_— Nmax
A= N max S
Y (n+1) (@i +E,,)
n=0 >
Procedure:

1) Startwithsome reasonable value of 4 and determine coeff.
a, and corresponding E
Il ) Calculate a new 4

lll) Iterate. Iterationconverges in afew steps.

In his Nuovo Cimento paper Pietarinen

applied his method andtested it onthe forward

7 N scattering amplitudes C* due to their simple

connection to the total cross section ImC* ~ o,

Inpractical analysis:
Nmax ~ 30
N

max

-

~/
N max

D> (n+1)*-a
n=0

A 4

Application of Pietarinen's method to z "z~ scattering
with detailed description of all stepsin their analysis

may by found in:

C.D.Froggattand J.L.Petersen,Nucl.Phys.B91(1975)454




200 —
— Re C [1/GeV]
— Im C[1/GeV]
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Pietarinen's @/ fixed -t amplitude analysis

Pietarinen's fixed -t (FT) amplitude analysisis one of the main
analyticity constraintsin Karlsruhe -Helsinki #N PWA.

In hisanalysis Pietarinenused IA C* and B*.

Atafixed-t IAamplitudesC*,B~ ,C_/V and B+/V are
crossing symmetric - even functionof v.

Appart fromnucleonpoles, crossing symmetric |A are analytic
functions inacomplex vZ plane cut along Vch <v?<oo.

|IA are not measured directly. They enter quadratically orin
some bilinear form inexpressions for measurable quantities.

Using conformal mapping:

a+\V5 —V°
-V, —V°

acutv? plane ismapped inside and onthe unitcircle.

Z a > 0,real.

A suitable value of parameter @ makes amoreuniform

distributionof datapoints ontheunit circle.




Representa tion of

invariant amplitudes

Choice of scaling

parameter 4

Representation of invariant amplitudes (IA)

C* andB* arerepresented inafollowing way :

N
C*v,)=Cx(v,)+C*(v,1)- D ciz"
n=0

N
B*(v,t)= By (v,t)+ B(v,t)- Y b;z"

n=0
C% and B are corresponding nucleon poles. Factors C* and B*
describe high energy behaviour of corresponding amplitudes.
Thebest approximants of IA are determined by minimizing a

quadratic form:

X? =Z§ata+¢’

where:
D =D,(c;)+4,D,(c, )+ A,D,(b; )+ 1,D,(b,)
A = N , similar for others, N= 30

zN:(cr*,)z(n+1)3

n=0

\ 4

E. Pietarinen,
Nucl. Phys. B107 (1976) 21




Steps in thefixed - tamplitude analysis

Steps in the FT i) Prepareinput fort=0.Thisismostimportant part of theinput
amplitude analysis

because imaginary parts of C* 1A are directly connected to the

7z~ N totalcross sections.

ii) Move experimentaldatatopredefined t-valuesusing smallstepsint.
Problemisnot trivial-itmight be asubject of another talk.

iii) Start withamplitude analysis for t = 0.Use obtained coefficients
inamplitude expansions asstarting values inanalysis for next t - value.

iV) Continue until reaching minimum t-value. PietarinenmadehisFT

amplitude analysis at 40 t - valuesintherange-1.0 GeV?<t<0.

V) Results fromFT amplitude analysis consists of coefficients

{C:f,b:f }for allt - values used intheanalysis.
Calculationof IAisreliable and fast and is performed by nested
multiplication.

Problem : Errors obtained from fitting programs are correlated

and underestimated - another problem for itself.



SE PWA constrained by results from fixed-t amplitude analysis

Available experimentaldata have to be moved to
predetermined energy values - fixed energy data bins.

Suppose that we perform SE PWA atenergy w.

Let therange -2q° <t <0 (-1<cos@<+1)contains n t-values

at which FT analysis was performed. Obtained results are denoted
by F (t;)(k=14, j=1,..n).




i) In SEPWA minimize:

2 2 2
X = Xdata T XFr
Foranobservable D measuredat N angles ... hasaform

D,..(6, )— Dy (6,
Zdata_Z( eXp( ) ( ))

k

Dey,(0y ) aremeasured datawith errors 4
D, is a value of measurable quantity calculated

from partial waves which are parametersinafit.

;(ET isconstraining part inthe form:

(ReF, (t;)—ReFypy (1))

- g3 R :

] y,
s o ((IME(t) = ImFypy (1))
ZZ( — ‘
k Kj Y,

Errors of FT amplitudes are not fixed.

Should be adjusted so thatinthe final fit xﬁata z;{éT

Constrained SE PWA

ii) After performing SEPWA atpredetermined N, energies,
use obtained partial waves asaconstraintin a FT amplitude
analysis minimizing :

X® = Lawa + P+ Apw
Npw ( 2
ReF (v, )—ReF,, (v, )
Z§w= z: : P +

k=1 \ &y

2
& ((ImF (v, )= Im Fpy, (v, )]
k=1 \ &y

iii) Iterate until reaching reasonable agreement




Start PW solution

l

FT amplitude analysis
Minimize :

X? =Zdzata +@+Z§W

At each of N, energies perform

—' SEPWA

Minimize :

2 2 2
X = Xoaa T XFr

Use results from SEPWA
as aconstraint in

FT amplitude analysis




