Selected Topics in Complex Analysis as Tools in PWA

J. Stahov, University of Tuzla, Bosnia and Herzegovina

Mainz, 07-10.10.2014.

Literature

S. Hassani, Mathematical Physics, Springer Verlag, 1999.
J. H. Mathews, W. Howell, Complex Analysis for Mathematics and Eengineering, Jones\& Bartlet Learning, 2010
H. A. Pristley, Introduction to Complex Analysis, 2nd ed., Oxford Univ. Press, 2003.
J. Hamilton, J. L. Petersen, New developments in dispersion theory, Vol.1, Nordita Copenhagen,1975

This is not a Course in Complex Analysis
This is not a Course in Complex Analysis
This is not a Course in Complex Analysis

```
How the lectures will be organized?
Part 1 Complex analysis- repetitorium
From definition of complex number to contour integrals and analytic continuation
Part 2 Analyticity of invariant scattering amplitudes as an constraint in PWA.
Fixed-t DR- method of discrepancy function
Pietarinen's method of convergence test function
```


Complex algebra

Def. Complex number is defined by an ordered pair of real numbers $x, y \in R, z=(x, y)=x+i \cdot y$ where $i=(0,1)$ is imaginary unit.

Complex conjugate number \boldsymbol{z}^{*} is defined as:

$$
z^{*}=(x,-y)=x-i \cdot y
$$

Algebraic operations with complex numbers.

$$
\begin{aligned}
& \text { i) Addition } \\
& \begin{array}{l}
z=z_{1}+z_{2}=\left(x_{1}, y_{1}\right)+\left(x_{2}, y_{2}\right)=\left(x_{1}+x_{2}, y_{1}+y_{2}\right) \\
\quad=\left(x_{1}+x_{2}\right)+i \cdot\left(y_{1}+y_{2}\right)
\end{array} \\
& \begin{array}{r}
z_{1}+z_{2}=z_{2}+z_{1} \\
\left(z_{1}+z_{2}\right)+z_{3}=\left(z_{1}+z_{2}\right)+z_{3} \\
z_{1}=-z=(-x,-y) \\
z+(-z)=0=(0,0)
\end{array}
\end{aligned}
$$

ii) Multiplication

$$
\begin{aligned}
& z_{1} \cdot z_{2}=\left(x_{1}, y_{1}\right) \cdot\left(x_{2}, y_{2}\right) \\
& \quad=\left(x_{1} x_{2}-y_{1} y_{2}, x_{1} y_{2}+x_{2} y_{1}\right) \\
& z_{1} \cdot\left(z_{2} \cdot z_{3}\right)=\left(z_{1} \cdot z_{2}\right) \cdot z_{3} \\
& z_{1} \cdot\left(z_{2}+z_{3}\right)=z_{1} \cdot z_{2}+z_{1} \cdot z_{3}
\end{aligned}
$$

iii) Division

$$
\begin{aligned}
\frac{z_{1}}{z_{2}} & =\frac{x_{1}+\boldsymbol{i} \cdot \boldsymbol{y}_{1}}{x_{2}+\boldsymbol{i} \cdot \boldsymbol{y}_{2}}=\frac{x_{1}+\boldsymbol{i} \cdot \boldsymbol{y}_{1}}{x_{2}+\boldsymbol{i} \cdot \boldsymbol{y}_{2}} \cdot \frac{x_{2}-\boldsymbol{i} \cdot \boldsymbol{y}_{2}}{x_{2}-\boldsymbol{i} \cdot \boldsymbol{y}_{2}} \\
& =\frac{x_{1} x_{2}+\boldsymbol{y}_{1} y_{2}}{\boldsymbol{x}_{2}^{2}+\boldsymbol{y}_{2}^{2}}+\boldsymbol{i} \frac{\boldsymbol{x}_{2} \boldsymbol{y}_{1}-x_{1} \boldsymbol{y}_{2}}{\boldsymbol{x}_{2}^{2}+\boldsymbol{y}_{2}^{2}}
\end{aligned}
$$

Norm or modulus of complex number

Def. $\quad|z|=\sqrt{x^{2}+y^{2}}=\sqrt{z \cdot z^{*}}, \quad|z| \in \boldsymbol{R}$

For complex numbers $\boldsymbol{z}_{1}, \boldsymbol{z}_{2} \in \boldsymbol{C}$ hold following inequalities:
i) $\quad\left|z_{1}+z_{2}\right| \leq\left|z_{1}\right|+\left|z_{2}\right|$ triangle inequality
ii) $\quad|z|^{2} \geq 0, \quad|z|=0 \Rightarrow z=0$

Additional useful inequalities:
iii) $\quad|\boldsymbol{R e} z| \leq|z| ; \quad|\boldsymbol{I m} z| \leq|z|$
iV) $\quad\left|\boldsymbol{z}_{1}+\boldsymbol{z}_{2}\right| \geq\left|\left|\boldsymbol{z}_{1}\right|-\left|\boldsymbol{z}_{2}\right|\right|$

Graphycal representation of complex numbers

Since a complex number $\mathbf{z =}(\boldsymbol{x}, \boldsymbol{y})$ is an ordered pair of real numbers, It may be represented by point in x, y plane called complex plane.

\boldsymbol{x} and \mathbf{y} axes are called real and imaginary axes and complex plane $-z$ plane

Polar representation of complex number

$\operatorname{Arg} z$ is determined up to integer multiple of 2π Principal range of argument:

$$
-\pi<\theta \leq \pi
$$

$$
\begin{aligned}
& x=r \cdot \cos \theta \\
& y=r \cdot \sin \theta \\
& z=r(\cos \theta+i \cdot \sin \theta)=r \cdot e^{i \theta} \\
& \theta=\arg z \\
& e^{2 \pi \cdot i}=1
\end{aligned}
$$

Using complex numbers z_{1}, z_{2} in polar form, multiplication and division are written in simple form:

$$
\begin{aligned}
& z_{1} \cdot z_{2}=r_{1} \cdot r_{2} \cdot e^{i\left(\theta_{1}+\theta_{2}\right)} \\
& \frac{z_{1}}{z_{2}}=\frac{r_{1}}{r_{2}} \cdot e^{i\left(\theta_{1}-\theta_{2}\right)}
\end{aligned}
$$

Spherical representation of complex number Extended complex plane

Unique point $N(0,0,1)$ corresponds to a point in infinity.
South pole coresponds to $\mathrm{z}=0$.
The set of complex numbers including Point at infinity is called extended complex plane

To each complex number $z=x+i y$ in complex plane C corresponds unique point on a unit sphere:

$$
X=\frac{x}{1+x^{2}+y^{2}}, \quad Y=\frac{y}{1+x^{2}+y^{2}}, \quad Z=\frac{x^{2}+y^{2}}{1+x^{2}+y^{2}}
$$

i) Real axis: $\operatorname{Im} z=0 ; \quad z=z^{*}$
ii) Imaginary axis: $\operatorname{Re} z=0$
iii) Line segment with end points $z_{1}, z_{2} \in \boldsymbol{C}$

$$
z(t)=(1-t) \cdot z_{1}+t \cdot z_{2}, \quad 0 \leq t \leq 1
$$

iv) Circle of radius r with center in \boldsymbol{z}_{0}

$$
\begin{aligned}
& \left|z-z_{0}\right|=r \\
& \left(x-x_{0}\right)^{2}+\left(y-y_{0}\right)^{2}=r^{2} \\
& x-x_{0}=r \cos \theta \\
& y-y_{0}=r \sin \theta \\
& z=z_{0}+r \cdot e^{i \theta}, \quad-\pi \leq \theta \leq \pi
\end{aligned}
$$

Curves in the complex plane

Def. A curve is a range of continuous complex valued function defined in the real interval $\boldsymbol{a} \leq \boldsymbol{t} \leq \boldsymbol{b}$

$C: z(t)=x(t)+i \cdot y(t)$
$z(t)$ - parametrisation of curve \boldsymbol{C}
$z(a)$ is called initial point and $z(b)$ final point of curve \boldsymbol{C}
i) If $x(t)$ and $y(t)$ are differentiable, curve is smooth
i) A curve is simple if it does not cross itself

$$
t_{1} \neq t_{2} ; \quad z\left(t_{1}\right) \neq z\left(t_{2}\right)
$$

iii) A path is a finite collection of simple curves

$$
\left\{z_{1}, z_{2, \ldots} z_{n}\right\}
$$

such that a final point of z_{k} coincides with initial point of $\boldsymbol{z}_{\boldsymbol{k}+1}$
iv) A countur is a path whose curves are smooth. When the initial point of \boldsymbol{Z}_{l} coincides with the final point of $\boldsymbol{Z}_{\boldsymbol{n}}$ the contour is simple closed conure.

Examples
a) Simple curve
b) Not simple curve
c) Path
d) Simple closed counture
v) A curve is oriented. It goes from initial point $z(a)$ to final point $z(b)$.
vi) We define a curve ' $-\mathbf{C}$ ' as a range of another function $\gamma(\boldsymbol{t})$ having the same values as $z(t)$ but where initial and final values are reversed:

$$
C: z(t)
$$

$-C: \gamma(t)=z(a+b-t)$
vii) Any simple closed contour devides the complex plane into two domains. One is bounded and is called the interior of \boldsymbol{C}. The other is called exterior. Contour is positively oriented if the interior is on its left side (counterclock wise orientation).

Complex functions

Def. Complex function is a map $f: C \rightarrow C, \quad f(z)=w$ where both \boldsymbol{z} and \boldsymbol{w} are complex numbers, $\boldsymbol{z}, \boldsymbol{w} \in \boldsymbol{C}$.

Geometrically, f is correspondence between two complex planes, \boldsymbol{z} and \boldsymbol{w}

$$
f(z)=w(x, y)=u(x, y)+i \cdot v(x, y)
$$

\boldsymbol{u} and \boldsymbol{v} are real and imaginary parts of \boldsymbol{w}

$$
\begin{aligned}
& \text { Example: } \\
& \qquad \begin{array}{l}
f(z)=w=z^{2} \\
w=(x+i y)^{2}=x^{2}-y^{2}+i \cdot 2 x y \\
u=x^{2}-y^{2}, \quad v=2 x y
\end{array}
\end{aligned}
$$

It maps for instance: $\boldsymbol{y}=\boldsymbol{m} \boldsymbol{x}$ to

$$
\begin{aligned}
u & =\left(1-m^{2}\right) x^{2} ; v=2 m x^{2} \\
v & =\frac{2 m}{1-m^{2}} u
\end{aligned}
$$

Limits of complex functions- continuity

Limits of complex functions are defined in terms of modula of complex numbers. The expression

$$
\lim _{z \rightarrow z_{0}} f(z)=w_{0}
$$

means that for each real number $\varepsilon>0$ there exists a real number $\boldsymbol{\delta}>0$ such that:
$\left|f(z)-w_{0}\right|<\varepsilon$ whenever $\left|z-z_{0}\right|<\delta$
We say that function $f(z)$ is continuous at $z=z_{0}$
if

$$
\lim _{z \rightarrow z_{0}} f(z)=f\left(z_{0}\right)
$$

In terms of functions \boldsymbol{u} and \boldsymbol{v}
$\lim _{z \rightarrow z_{0}} f(z)=\boldsymbol{u}\left(x_{0}, y_{0}\right)+\boldsymbol{i} \cdot \boldsymbol{v}\left(x_{0}, y_{0}\right)=u_{0}+\boldsymbol{i} \cdot \boldsymbol{v}_{0}$
iff
$\lim _{x, y \rightarrow x_{0}, y_{0}} u(x, y)=u_{0}, \lim _{x, y \rightarrow x_{0}, y_{0}} v(x, y)=v_{0}$

Elementary functions

i) Polnomial function

$$
P_{n}(z)=a_{0}+a_{1} z+\ldots+a_{n} z^{n} \quad a_{i}, z \in C
$$

ii) Rational function

$$
w(z)=\frac{P_{n}(z)}{Q_{m}(z)}
$$

iii) Exponential function

$$
\begin{aligned}
& w(z)=e^{z}=e^{x}(\cos y+\sin y) \\
& \boldsymbol{e}^{2 n \pi i}=1 \\
& \boldsymbol{e}^{z_{1}} \cdot \boldsymbol{e}^{z_{2}}=\boldsymbol{e}^{z_{1}+z_{2}}, \quad \frac{\boldsymbol{e}^{z_{1}}}{\boldsymbol{e}^{z_{2}}}=\boldsymbol{e}^{z_{1}-z_{2}}
\end{aligned}
$$

iv) Trigonometric functions
$\sin z=\frac{e^{i z}-e^{-i z}}{2 i}, \quad \cos z=\frac{e^{i z}+e^{-i z}}{2}$
$\operatorname{tg} z=\frac{\sin z}{\cos z}, \quad \operatorname{ctg} z=\frac{\cos z}{\sin z}$
v) Hyperbolic functions

$$
\begin{aligned}
& \sinh z=\frac{e^{z}-e^{-z}}{2}, \quad \cosh z=\frac{e^{z}+e^{-z}}{2} \\
& \operatorname{tgh} z=\frac{\sinh z}{\cosh z}, \quad \operatorname{ctgh}=\frac{\cosh z}{\sinh z}
\end{aligned}
$$

vi) Logarithmic function

$$
\ln z=\ln \left(r \cdot e^{i \theta+2 n \pi \mathrm{i}}\right)=\ln r+i \theta+2 n \pi i
$$

Principal branch :

$$
\ln z=\ln r+i \theta, \quad-\pi<\theta \leq \pi
$$

vii) Invesre trigonometric functions
viii) Inverese hyperbolic functions
ix) Function

$$
w(z)=z^{\alpha}=e^{\alpha \cdot \ln z}
$$

Multivalued functions, branch points, branch cuts....

Complex number in a polar form:

$$
z=r e^{i \arg z}, \quad \arg z=\theta+2 n \pi
$$

May lead to functions that can take different values at the same point in the complex planemultivalued function.

i) Consider function $\boldsymbol{f}(z)=\sqrt{z}=\boldsymbol{f}(\boldsymbol{r}, \boldsymbol{\theta})=\boldsymbol{r} \boldsymbol{e}^{i \frac{\theta}{2}}$ After making a complete circuit around \boldsymbol{C} in fig. A

$$
\begin{aligned}
& z\left(r_{0}, \theta_{0}\right)=z\left(r_{0}, \theta_{0}+2 \pi\right) \\
& \begin{aligned}
f\left(r_{0}, \theta_{0}+2 \pi\right) & =\sqrt{r} e^{i \frac{\theta_{0}+2 \pi}{2}}=\sqrt{r} e^{i \frac{\theta_{0}}{2}} \cdot e^{i \pi}= \\
& =-\sqrt{r} e^{i \frac{\theta_{0}}{2}}=-f\left(r_{0}, \theta_{0}\right) \\
f\left(r_{0}, \theta_{0}+2 \pi\right) & \neq f\left(r_{0}, \theta_{0}\right)
\end{aligned}
\end{aligned}
$$

ii) Consider function :

$$
\begin{aligned}
& f(z)=\ln z=\ln \left(r e^{i \arg z}\right) \\
& f(z)=\ln r+i \arg z=\ln r+i \theta+i 2 n \pi
\end{aligned}
$$

Encircling $\boldsymbol{z}=\mathbf{0}$ arround \boldsymbol{C} starting at point $\boldsymbol{z o}$:

$$
\begin{aligned}
& z_{0}\left(r_{0}, \theta+2 \pi\right)=z_{0}\left(r_{0}, \theta\right) \\
& \ln \left(z_{0}\left(r_{0}, \theta+2 \pi\right)\right)=\ln r+i \theta+2 \pi i \\
& \ln \left(z_{0}\left(r_{0}, \theta\right)\right)=\ln r+i \theta \\
& \ln \left(z_{0}\left(r_{0}, \theta+2 \pi\right)\right)-\ln \left(z_{0}\left(r_{0}, \theta\right)\right)=2 \pi i
\end{aligned}
$$

What is the difference between the contours

 in these two figures which makes the behaviousr of \sqrt{z} and $\boldsymbol{I n z}$ so different?Answer: The first contour encloses the erigin $\mathbf{z = 0}$ which the second does not.
The origin is a branch point of functions \sqrt{z} and $\ln z$
Def. The point z_{b} is called abranch point for the complex multivalued function $f(z)$ if the value of $f(z)$ does not return to its initial value as a closed curve around
z_{b} is traced (starting at some arbitrary point on the curve).

Important: What maters in def. of branch point is the local behavour of function $f(z)$ near z_{b}. For example, consider $\boldsymbol{\operatorname { l n }}(z)$, take apoint z^{\prime} and a contour \boldsymbol{C} around it (that also enclose $z=0$). The value of $\boldsymbol{\operatorname { l n } (z) \text { will change as this curve is traced }}$ but z^{\prime} is not abranch point of $\ln \left(z\right.$.). For contour \boldsymbol{C}^{\prime} close to z^{\prime} there is no change of $\boldsymbol{\operatorname { l n }}(z)$.
Hence, point z^{\prime} is not abranch point of function $\ln (z)$.

Function $\ln (z)$ is instructive example of mutivalued function.
Studying behaviour of $\boldsymbol{\operatorname { l n }}(\mathbf{1} / \boldsymbol{z})=-\boldsymbol{\operatorname { l n }}(z)$ around $z=0$, shows that infinity is also abranch point of function $f(z)$.
Function $\boldsymbol{\operatorname { l n }}(z)$ has two branch points: $z=0$ and $z=\infty$.
This is a general situation-functions have no sole branch point.
Branch points always appear in pairs.

How to obtain a single valued function out of multtivalued one?

Prevent encircling of branch points!
To do it, one introduces a branch cut, aline connecting branch points and agree never to cross it.
Branch cut for a function $\ln (z)$ is shown in a figure.
Function \sqrt{z} has the same cut.

1
It is to point out that a branch points of an function are unique.
Branch cuts are not. A cut along any path preventing encircling any of branch points is allowed.

Branch points always appear in pairs

Branch cut

Discontinuity of function $\ln z$ across the cut.
Dis $=[\ln r+i(\pi-\varepsilon)]-[\ln r+i(-\pi+\varepsilon)]=2 i \pi-2 i \varepsilon$ $\lim _{\varepsilon \rightarrow 0}$ Dis $=2 i \pi=2 i \operatorname{Im}(\ln r+i \pi)$

Branches of multivalued functions

Let's define a set of functions

$$
f_{n}(z)=f_{n}(r, \theta r=\ln r+i \theta+2 n i \pi, \quad-\pi<\theta<\pi, \quad n=0,1, \ldots
$$

Observe :

$$
\begin{aligned}
f_{n+1}(r,-\pi+\varepsilon) & =\ln r-i \pi+i \varepsilon+2(n+1) i \pi \\
& =\ln r+i \varepsilon+(2 n+1) i \pi \\
f_{n}(r,+\pi-\varepsilon) & =\ln r+i \pi-i \varepsilon+2 n i \pi \\
& =\ln r-i \pi+(2 n+1) i \pi
\end{aligned}
$$

$\lim _{\varepsilon \rightarrow 0} f_{n+1}(r,-\pi+\varepsilon)=\lim _{\varepsilon \rightarrow 0} f_{n}(r,+\pi-\varepsilon)$
Value of f_{n} just above the cut is equal to value of f_{n+1}
just below the cut!
This leads to idea of Riemann surfaces.

Riemann surfaces (for $\ln z$)

i) Superpose an infinite number of cut complex planes one on top of the other, each plane corresponding to different value of n.
ii) Connect adjecent planes along a cut in such a way that the lower edge of the $\boldsymbol{n}_{\boldsymbol{t} \boldsymbol{h}}$ plane is connected to upper edge of $(\boldsymbol{n}-1)_{\text {th }}$ plane.
All planes contain two branch points
In this construction, if we cross a cut we end up on a different plane.

In applications:
i) Define branch points of a given function
ii) Cut the plane to avoid encircling of the branch points
iii) Specify branch- single valued function

For functions $\ln (z)$ and \sqrt{z}
principal barnches are defined as
$\ln (z)=\ln r+i \theta \quad-\pi<\theta<\pi$
$\sqrt{z}=r^{1 / 2} e^{i \theta / 2}, \quad-\pi<\theta<\pi$

Def. Derivative of a complex function $\mathrm{f}(\mathrm{z})$ at $z=z_{0}$ is:
$f^{\prime}\left(z_{0}\right)=\left.\frac{d f(z)}{d z}\right|_{z=z_{0}}=\lim _{\Delta z \rightarrow 0} \frac{f\left(z_{0}+\Delta z\right)-f\left(z_{0}\right)}{\Delta z}$
Provided that the limit exists and is independent of Δz

Example 1.
Check differentiability of function $f(z)=x^{2}+2 i \cdot y^{2}$ at point $z=1+i$ Let's start from the definition:

$$
\begin{aligned}
\left.\frac{d f(z)}{d z}\right|_{z=l+i} & =\lim _{\Delta z \rightarrow 0} \frac{f(1+i+\Delta z)-f(1+i)}{\Delta z} \\
& =\lim _{\substack{\Delta x \rightarrow 0 \\
\Delta y \rightarrow 0}} \frac{2 \Delta x+4 i \Delta y+(\Delta x)^{2}+2 i(\Delta y)^{2}}{\Delta x+i \Delta y}
\end{aligned}
$$

Let's approach $\mathrm{z}=1+\mathrm{i}$ along the line :

$$
\begin{aligned}
& y=1+m(x-1), \quad \Delta y=m \cdot \Delta x \\
& \text { then } \\
& \left.\frac{d f(z)}{d z}\right|_{z=1+i}=\frac{2+4 i m}{1+i m}
\end{aligned}
$$

We obtain infinitely many values of derivative depending on m.
Conclusion: Derivative of function $\boldsymbol{f}(\boldsymbol{z})=\boldsymbol{x}^{2}+2 \boldsymbol{i} \cdot \boldsymbol{y}^{2}$ does not exist at the point $z=1+i$.

Example 2.
Using the same way of approaching $\mathrm{z}=1+\mathrm{i}$, show that function

$$
f(z)=z^{*}=x-i \cdot y
$$

does not have derivative at that point (Even more: has not at any point !).

Differentiability

puts severe restrictions on complex functions

Q: Are there any criteria which may tell us if a given complex function is differentiable at a given point?

A: Yes.
The function $\boldsymbol{f}(z)=\boldsymbol{u}(\boldsymbol{x}, \boldsymbol{y})+\boldsymbol{i} \cdot \boldsymbol{v}(\boldsymbol{x}, \boldsymbol{y})$
is differentiable at a given point in the complex plane iff the Cauchy-Riemann conditions

$$
\frac{\partial u(x, y)}{\partial x}=\frac{\partial v(x, y)}{\partial y}, \frac{\partial u(x, y)}{\partial y}=-\frac{\partial v(x, y)}{\partial x}
$$

are satisfied and all partial derivatives of u and v are continues.
In that case:

$$
\frac{d f(z)}{d z}=\frac{\partial u(x, y)}{\partial x}+i \frac{\partial v(x, y)}{\partial y}=\frac{\partial v(x, y)}{\partial y}-i \frac{\partial u(x, y)}{\partial x}
$$

We are seldom interested in studying functions that are or are not differentiable at a given point. Complex functions that have a derivatives at all points in a neighborhood of a given point \boldsymbol{z}_{0} deserve a detailed study.

Def. A function $\boldsymbol{f}: \boldsymbol{C} \rightarrow \boldsymbol{C}$ is called analytic at z_{0} if it is differentiable \boldsymbol{a} z_{0} and at all points in some neighborhood of z_{0}.

A point at which $f(z)$ is analytic is called regular point of f.
A point at which f is not analytic is called a singular point or a singularity of f. If function f is analytic at each point in the region $\boldsymbol{R} \subset \boldsymbol{C}$, we say that function f is analytic in \boldsymbol{R}.

Formal rules for differentiation for real functions may be applyied to complex functions.
i) Let f and g be analytic in some region $\boldsymbol{R} \subset \boldsymbol{C}$ and $\lambda \in \boldsymbol{C}$ Then: $\boldsymbol{\lambda f}, \boldsymbol{f}+\boldsymbol{g}$, and $\boldsymbol{f} \cdot \boldsymbol{g}$ are analytic functions and:

$$
\begin{aligned}
& {[\lambda f(z)]=\lambda \cdot f^{\prime}(z), \quad\left[(f(z)+g(z)]=f^{\prime}(z)+g^{\prime}(z)\right.} \\
& {[f(z) \cdot g(z)]=f^{\prime}(z) \cdot g(z)+f(z) \cdot g^{\prime}(z)}
\end{aligned}
$$

Consequence: As $f(z)=z$ is analytic function in \boldsymbol{C}, then any polynomial

$$
\boldsymbol{P}_{n}(z)=\sum_{n=1}^{N} \boldsymbol{c}_{n} z^{n}
$$

is analytic in C.
ii) Let f be analytic in R then, providing that $f(z) \neq 0$, then $1 / f(z)$ is analytic function and its derivative is given by:

$$
\left[\frac{1}{f(z)}\right]=-\frac{f^{\prime}(z)}{f(z)^{2}}
$$

Consequence: Any rational function $f(z)=\frac{\boldsymbol{P}_{n}(z)}{\boldsymbol{Q}_{n}(z)}$ is analytic in C except points where $Q_{n}(z)=0$

Contour integrals

Let complex function $f(z)$ be continuous along a smooth curve C.
For each arc joining $\boldsymbol{z}_{\boldsymbol{k}}$ and $\boldsymbol{z}_{\boldsymbol{k}+1}$ choice one point ξ_{k} and form a sum:

$$
S_{n}=\sum_{k=1}^{n} f\left(\xi_{k}\right)\left(z_{k}-z_{k-1}\right)=\sum_{k=1}^{n} f\left(\xi_{k}\right) \cdot \Delta z_{k}
$$

Quantity

$$
\lim _{n \rightarrow \infty} S_{n}=\int_{C} f(z) \cdot d z
$$

is called complex line integral or line integral of $f(z)$ along curve \boldsymbol{C}.

$$
\begin{aligned}
& f(z)=u(x, y)+i \cdot v(x, y) \\
& \begin{aligned}
\int_{C} f(z) d z & =\int_{C}(u(x, y)+i \cdot v(x, y)) \cdot(d x+i d y) \\
& =\int_{C} u(x, y) d x-v(x, y) d y+i \int_{C} v(x, y) d x+u(x, y) d y
\end{aligned}
\end{aligned}
$$

From definition it is clear that integration along curve '-C' gives result of oposite sign:

$$
\int_{-C} f(z) d z=-\int_{C} f(z) d z
$$

The integral $\int_{C} f(z) d z$ may be cast in another form:

$$
S_{n}=\sum_{k=1}^{n} f\left(\xi_{k}\right) \frac{z_{k}-z_{k-1}}{t_{k}-t_{k-1}} \cdot\left(t_{k}-t_{k-1}\right)=\sum_{k=1}^{n} f\left(\xi_{k}\right) \frac{\Delta z_{k}}{\Delta t_{k}} \cdot \Delta t_{k}
$$

$$
\lim _{n \rightarrow \infty} S_{n}=\int_{C} f(z) d z=\int_{a}^{b} f\left((z(t)) z^{\prime}(t) d t\right.
$$

Obtained formula reduce calculation of contour integral to calculation of integral of complex function over real interval $\boldsymbol{a} \leq \boldsymbol{t} \leq \boldsymbol{b}$

Simply and multiply connected regions

Def. A region \boldsymbol{R} is called simply connected if any simple closed conture which lies in \boldsymbol{R} can be shrank to a point without leaving \boldsymbol{R}. A region \boldsymbol{R} which is not simply connected is called multiply connected.

Cauchy's theorem

Cauchy' s theorem, also known as Cauchy- Goursat theorem is the most important theorem in complex analysis.

Tm. Let $\boldsymbol{f}(\boldsymbol{z})$ be analytic on a simply closed contour \boldsymbol{C} and in all points inside \boldsymbol{C}. Then:

$$
\int_{C} f(z) d z=0
$$

Simple Direct Consequencies

i) If $f(z)$ is analytic in a symple connected region R, then the integral:

$$
I=\int_{z_{1}}^{z_{2}} f(z) d z
$$

Does not depend of the path in \boldsymbol{R} joining points \boldsymbol{z}_{1} and \boldsymbol{z}_{2}

Example:
Calculate integral

$$
I=\int_{C} z d z
$$

Along curves:

$$
\begin{aligned}
& C_{1}: z(t)=t+2 i \cdot t, \quad 0 \leq t \leq 1 \\
& C_{2}: z(t)=t+2 i \cdot t^{2}, \quad 0 \leq t \leq 1 \\
& C_{3}: z(t)=\left\{\begin{array}{ll}
t, & 0 \leq t \leq 1 \\
l+i \cdot(t-1), & 0 \leq t \leq 1
\end{array}\right\}
\end{aligned}
$$

ii) Deformation of contour

Let \boldsymbol{C}_{1} and \boldsymbol{C}_{2} are two simple positively oriented contours such that $\boldsymbol{C}_{\mathbf{1}}$ lies interior to \boldsymbol{C}_{2}.
If $f(z)$ is analytic in a region \boldsymbol{R} containing both contours than:

$$
\int_{C_{1}} f(z) d z=\int_{C_{2}} f(z) d z
$$

Complicated contours may be replaced by simpler one.

$$
\begin{aligned}
\int_{C} f(z) d z & =\int_{C 1} f(z) d z+ \\
& +\left\{\int_{C_{3}} f(z) d z+\int_{C_{4}} f(z) d z\right\}-\int_{C_{2}} f(z) d z=0
\end{aligned}
$$

$$
\int_{C_{2}} f(z) d z=\int_{C_{1}} f(z) d z
$$

Whatever you do, you do the same!

Cauchy-Goursat theorem for multiply connected regions

Multyply connected region may be reduced to simply connected one using cross cut(s) as shown in a drawing.
As in previous case, integrals along cross cut cancel out.

$$
\int_{C} f(z) d z=\int_{C 1} f(z) d z-\int_{C 2}^{p} f(z) d z=0
$$

Cauchy's integral formula

Amazing formula: Gives value of an analytic function in every point inside a simple closed contour when its value on the contour is given.

An analytic function is not free to change inside a region once its values are fixed on the contour enclosing that region.

Tm. Let $f(z)$ be analytic function on and inside a positively oriented contour C.
Than, if z_{0} is inside contour:
$f\left(z_{0}\right)=\frac{1}{2 \pi \cdot i} \int_{C} \frac{f(z) d z}{z-z_{0}}$
if \boldsymbol{z}_{0} is outside contour then $\boldsymbol{f}\left(\boldsymbol{z}_{0}\right)=0$.

Liouville's theorem

Def. Function is bounded in a region \boldsymbol{R} if there is a constant \boldsymbol{M} such that $|\boldsymbol{f}(z)| \leq \boldsymbol{M}$
Tm. Let $f(z)$ be analytic and bounded in the whole complex plane \boldsymbol{C}. Than function $f(z)$ is constant

```
The maximum modulus theorem
```

Tm. The absolute value of an analytic function $f(z)$ can not have a local maximum within a region \boldsymbol{R} of analyticity of the function. Maximum can be achived only on the border of \boldsymbol{R}.

Cauchy's formula for derivatives

Tm. Let $f(z)$ be analytic inside and on the boundary \boldsymbol{C} of a simple connected region \boldsymbol{R}. Derivatives of all orders of function $f(z)$ exist in a region \boldsymbol{R} and are themselves analytic functions in the same region
The \boldsymbol{n}-th derivative is given by:

$$
f^{(n)}(z)=\frac{n!}{2 \pi \cdot i} \int_{C} \frac{f(z) d z}{\left(z-z_{0}\right)^{n+1}}
$$

Reminder: We defined analytic function in a region \boldsymbol{R} as a complex function having a first derivative.
Theorem claims that, being analytic, function is infinitely derivable.

Morrera's theorem

Tm. Let function $f(z)$ be continuous in a simple connected region \boldsymbol{R}. If for each simple closed contour \boldsymbol{C} in \boldsymbol{R} holds:

$$
\begin{array}{r}
\int_{\text {then } f \text { i }} f(z) d z=0 \\
\text { analytic in } R \text {. }
\end{array}
$$

Digression- Power series

i) A function

$$
S(z)=\sum_{n=0}^{\infty} c_{n}\left(z-z_{0}\right)^{n}
$$

is called power series.
Power series converges if $\left|z-z_{0}\right|<\rho$ and diverges if $\left|z-z_{0}\right|>\rho$. We call the number ρ radius of convergence of the power series.
ii) A power series is said to converge absolutely if the real series

$$
S(z)=\sum_{n=0}^{\infty}\left|c_{n}\right|\left(z-z_{0}\right)^{n} \mid \text { converges. }
$$

Digression -Power series

iii) If power series $\sum_{n=0}^{\infty} c_{n}\left(z-z_{0}\right)^{n} \quad$ converges for $z_{1} \neq z_{0}$,
then it converges absolutely for every value z such that $\left|z-z_{0}\right|<\left|z_{1}-z_{0}\right|$.
Similarly, if power series $\sum_{n=0}^{\infty} \frac{\boldsymbol{b}_{n}}{\left(z-z_{0}\right)^{n}}$ converge for $z_{2} \neq z_{0}$ then it converges absolutely for every z such that $\left|z-z_{0}\right|>\left|z_{2}-z_{0}\right|$

Digression -Power series

iv) Convergence of $S=\sum_{n=0}^{\infty} c_{n}\left(z-z_{0}\right)^{n}$ means that for partial sums $S_{N}=\sum_{n=0}^{N} c_{n}\left(z-z_{0}\right)^{n}$ and $\varepsilon<0$ exists an integer N_{ε} such that $\left|S-S_{N}\right|<\varepsilon, \quad N>\boldsymbol{N}_{\varepsilon}$. If N_{ε} is the same for all \boldsymbol{z} inside the circle of convergence, than connvergence is uniform.
v) The power series $S=\sum_{n=0}^{\infty} c_{n}\left(z-z_{0}\right)^{n}$ is uniformply convergent for all points within its circle of convergence and represents a function that is analytic there.
If the power series $\sum_{n=0}^{\infty} \frac{\boldsymbol{b}_{n}}{\left(z-z_{0}\right)^{n}}$ converge in an anulus $\boldsymbol{r}_{2}<\left|z-z_{0}\right|<\boldsymbol{r}_{1}$ then it is uniformly convergent and represents analytic function there.
vi) Uniformly convergent power series can be :
a) differentiated term by term within the circle of convergence: $\frac{d S(z)}{d z}=\sum_{n=1}^{\infty} n \cdot c_{n}\left(z-z_{0}\right)^{n}$
b)Integrated term by term along any curve which lie entirely inside its circle of convergence:

$$
\int_{C} S(z) d z=\sum_{n=0}^{\infty} c_{n} \int_{C}\left(z-z_{0}\right)^{n} d z
$$

Taylor and Laurent series.

Taylor's Tm. Let \boldsymbol{f} be analytic function in interior of the circle \boldsymbol{C} centered at \boldsymbol{z}_{0} and having radius \boldsymbol{r}_{0}. Then at each point \boldsymbol{z} inside \boldsymbol{C} :

$$
f(z)=\sum_{n=0}^{\infty} \frac{f^{(n)}\left(z_{0}\right)}{n!} \cdot\left(z-z_{0}\right)^{n}
$$

The region of convergence is determined by $\left|\boldsymbol{z}-\boldsymbol{z}_{0}\right|<\boldsymbol{r}_{0}$ where \boldsymbol{r}_{0} is
the distance from \boldsymbol{z}_{0} to nearest singularity of the function $\boldsymbol{f}(\mathbf{z})$.

Taylor's expansion requires that function $f(z)$ has no singularities inside the circle of convergence. In many occation there may exist singularity in a region of interest. In this case function may be given by a so called Laurent expansion.

Tm. Let \boldsymbol{C}_{1} and $\boldsymbol{C}_{\mathbf{2}}$ be circles in the \boldsymbol{z} plane centered at $\boldsymbol{z} \boldsymbol{o}$ with radii $\boldsymbol{r}_{\mathbf{2}}<\boldsymbol{r}_{\mathbf{1}}$. Let $\boldsymbol{f}(\boldsymbol{z})$ be analytic on $\boldsymbol{C}_{\mathbf{1}}$ and $\boldsymbol{C}_{\mathbf{2}}$ and in an annular
 region \boldsymbol{R} between them.

Then for each $z \in R, f(z)$ is given by:

$$
\begin{aligned}
f(z) & =\sum_{n=-\infty}^{\infty} c_{n}\left(z-z_{0}\right)^{n} \\
c_{n} & =\int_{C} \frac{f(\xi) d \xi}{\left(\xi-z_{0}\right)^{n}}
\end{aligned}
$$

\boldsymbol{C} is any positively oriented contour within \boldsymbol{R}.

i) Laurent series converges for $r_{2}<\left|z-z_{0}\right|<r_{1}$.
ii) If $\quad r_{2}=0, \Rightarrow c_{n}=0, n=-1,-2, \ldots$

In that case, Laurent series recover Taylor series (as it should be).
iii) Part with nonnegative powers of (z-zo)

$$
\sum_{n=0}^{\infty} c_{n}\left(z-z_{0}\right)^{n}
$$

is called analytic or regular part of Laurent series.
iV) Part which consists of inverse powers of (z-zo)
$\sum_{n=-\infty}^{-1} c_{n}\left(z-z_{0}\right)^{n}=\ldots \frac{c_{-n}}{\left(z-z_{0}\right)^{n}}+\ldots+\frac{c_{-1}}{\left(z-z_{0}\right)}$
is called principal part.
Complex number, coefficient

$$
c_{-1}=\frac{1}{2 \pi \cdot i} \int_{C} f(z) d z
$$

is called residue and is denoted by

$$
c_{-1}=\operatorname{Res}\left[f\left(z_{0}\right)\right]
$$

Tm. Uniqueness of the Laurent expansion If the series $\sum_{n=-\infty}^{\infty} \mathrm{c}_{\mathrm{n}}\left(z-z_{0}\right)^{n}$ converges to analytic function $f(z)$ in some annular region about z_{0}, than it is the unique Laurent series expansion in this region.

Singularities of complex functions

Def. Let $f(z)$ be a complex valued function.
Singular point z_{o} is a point at which $f(z)$ is not analytic.
If there is an neighborhood

$$
0<\left|z-z_{0}\right|<r
$$

where f is analytic except $\mathbf{z o}_{0}$, then \mathbf{Z}_{0} is isolated singular point.

Classification of singularities of analytic function f is possible by examination of its Laurent expansion.

Isolated singular point

There are several kinds of singularities:
i) Removable
ii) Poles
iii) Essential
iv) Branch points

Classification of singularities

A point $\mathbf{z =}=\mathbf{z o}_{0}$ is called removable singularity if function $f(z)$ is not defined at $z=z_{0}$ but $\lim f(z)$ exists.

Examples:

$$
\begin{array}{ll}
f(z)=\frac{\sin z}{z}, & \lim _{z \rightarrow 0} \frac{\sin z}{z}=1 \\
f(z)=\frac{e^{z}-1-z}{z^{2}}, & \lim _{z \rightarrow 0} \frac{e^{z}-1-z}{z^{2}}=\frac{1}{2}
\end{array}
$$

Let principal part of Laurent expansion of analytic function $f(z)$ around $\mathbf{z}=\mathbf{z o}_{0}$ has only a finite number of terms:

$$
\boldsymbol{c}_{-m} \neq 0, \quad \boldsymbol{c}_{-\boldsymbol{n}}=0, n>\boldsymbol{m}
$$

Then function $f(z)$ has a pole of order m.
$\lim f(z)= \pm \infty$
$\lim _{z \rightarrow 0}$
If $m=1$, pole is called simple pole.

Def. If the principal part of Laurent expantion around point z_{0} has Infinite number of terms, then z_{0} is essential singular point of function $f(z)$

$$
\begin{aligned}
& \text { In the neighborhood of essential singularity an, otherwise analytic } \\
& \text { function } f(z) \text { may take any value except possibly one. } \\
& \text { Example : } \\
& \mathrm{Z}=0 \text { is essential singularity of } \\
& \qquad \boldsymbol{f}(\boldsymbol{z})=\boldsymbol{e}^{l / z} \\
& \boldsymbol{e}^{l / z}=\sum_{n=0}^{\infty} \frac{1}{\boldsymbol{n}!} \cdot \frac{1}{z^{\boldsymbol{n}}} \\
& \lim _{z \rightarrow 0} \boldsymbol{e}^{l / z}=\left\{\begin{array}{cl}
\infty & \mathrm{z} \text { approaches } 0 \text { along }+\mathrm{x} \\
-\infty & \mathrm{z} \text { approaches } 0 \text { along }-\mathrm{x} \\
\text { Oscilating } & \mathrm{z} \text { approaches zero along +iy }
\end{array}\right.
\end{aligned}
$$

A point z_{0} is called branch point of a multivalued function $f(z)$ if the branches of $f(z)$ interchanged when \boldsymbol{z} describes a closed path around \mathbf{z}.
Branch point is not an isolated singular point because any circle around z_{o} leads to interchange of branches of multivalued function.

Examples:

$$
\boldsymbol{f}(z)=\sqrt{z} \text { and } \boldsymbol{f}(z)=\boldsymbol{\operatorname { l n }}(z) \quad \text { have a branch point at } \boldsymbol{z}=\mathbf{0}
$$

Singularities at infinity

By letting $z=1 / w$ in function $f(z)$, we obtain the function

$$
F(w)=f(1 / w)
$$

The nature of singularity at $z=\infty$ is defined to be the same as that of $\boldsymbol{F}(\boldsymbol{w})$ at $\boldsymbol{w}=\mathbf{0}$

Examples:

Function $f(z)=z^{3}$ has the pole of order 3 at infinity becuse $\boldsymbol{F}(\boldsymbol{w})=1 / w^{3}$ has a pole of order 3 at zero.
Function $\boldsymbol{f}(\boldsymbol{z})=\boldsymbol{e}^{z}$ has essential singularity at infinity because function $\boldsymbol{F}(\boldsymbol{w})=\boldsymbol{e}^{1 / z}$ has essential singularity at zero.

Classification of functions

Laurent expansion of analytic function may serve as definition of two kinds of analytic functions

Entire
 - Analytic everywhere except at $\mathbf{z = \infty}$
 - Can be represented by Taylor series which has an infinite radius of convergence.

Examples: $\boldsymbol{e}^{z}, \sin z, \boldsymbol{\operatorname { c o s }} z$

Meromorphic

- All singularities in a give region \boldsymbol{R} are isolated poles and removable singularities -

By definition, meromorphyc functions have no essential singularities

Rational

$f(z)=\frac{P_{n}(z)}{Q_{m}(z)}$
$\begin{aligned} & \text { where } P \text { and } Q \text { are polynomials } . \\ & \\ & \text { Meromorphic in entire complex plane. } \\ & \text { than } f(z) \text { is rational function } f(z) \text { is meromorphyc in entire complex plane, }\end{aligned}$

$$
\text { Example: } f(z)=\frac{z}{(z-1) \cdot(z+3)^{2}} \quad \begin{array}{ll}
\text { analytic everywhere except simple pole at } z=1 \text { and } \\
\text { a second order pole at } z=-3
\end{array}
$$

The Cauchy's residue theorem
The residue theorem has the same significance for meromorphic functions in range \boldsymbol{R} as Cauchy's formula for functions analytic in R.

$$
\int_{C} f(z) d z=0
$$

$$
f(z)=\int_{C} \frac{f(\xi) d \xi}{\xi-z}
$$

Cauchy's residue theorem for function having poles inside contour C

Cauchy's residue theorem

Let $f(z)$ be analytic function inside and on the positively oriented contour \boldsymbol{C} except for a finite number of poles at points $\mathbf{z}_{1}, \ldots, \mathbf{Z}_{n}$.
Then

$$
\int_{C} f(z) d z=2 \pi i \sum_{k=1}^{n} \operatorname{Res}\left[f\left(z_{k}\right)\right], \quad \operatorname{Res}\left[f\left(z_{k}\right)\right]=\frac{1}{2 \pi i} \int_{C_{k}} f(z) d z
$$

Analytic continuation

Motivation: It is often tha case that analytic function $f(z)$ is given in a limited region \boldsymbol{R}.
We may ask the question:
Is it possible to extend the function beyond \boldsymbol{R}
Answer: Yes, under certain conditions.

Suppose we do not know precise form of the analytic function inside the circle of convergence \boldsymbol{C}_{1} with radius of convergence $\boldsymbol{r}_{1} . f(z)$ is represented by a Taylor expansion:

$$
f(z)=\sum_{n=0}^{\infty} a_{n}\left(z-z_{0}\right)^{n}
$$

1. Calculate $f(z)$ and all its derivatives in point $\mathbf{z}_{\mathbf{z}}$ inside $\boldsymbol{C}_{\mathbf{2}}$ and arrive to expression:

$$
f(z)=\sum_{n=0}^{\infty} b_{n}\left(z-z_{0}\right)^{n}
$$

having circle of convergence \boldsymbol{C}_{2} and radius of convergenc $\boldsymbol{r}_{\mathbf{2}}$
(no singularity on \boldsymbol{C}_{1} inside \boldsymbol{C}_{2}).
2. Repeat this procedure until arrive to point \boldsymbol{Z}_{n}

We say that $f(z)$ is extended analytically beyond \boldsymbol{C}_{1}. The procedure is called analytic continuation.

Q:

Is analytic continuation unique? Shall we obtain the same result using Pat2 instead of the Path1?

Tm1. If the function f is analytic in a region \boldsymbol{R} and vanisches in neighborhood of $z_{0} \in \boldsymbol{R}$ or for a segment of curve in \boldsymbol{R}. Then it vanishes identically in this region

Let $\boldsymbol{f 1}$ and $\mathbf{f} \mathbf{2}$ are analytic in \boldsymbol{R}. If $\boldsymbol{f 1} \mathbf{=} \mathbf{f} \mathbf{2}$ in a neighborhood of a point \boldsymbol{z}, or for a segment of curve in \boldsymbol{R}, then $f 1=f 2$ in \boldsymbol{R}.

Tm2. Let f_{1} and $f_{\mathbf{2}}$ be analytic in regions $\boldsymbol{R}_{\mathbf{1}}$ and $\boldsymbol{R}_{\mathbf{2}}$ respectively. Suppose f_{1} and f_{2} have different functional forms in their respective regions of analyticity. If there is an overlap between $\boldsymbol{R}_{\mathbf{1}}$ and $\boldsymbol{R}_{\mathbf{2}}$ and if $\boldsymbol{f}_{\mathbf{1}}=\boldsymbol{f}_{\mathbf{2}}$ within that overlap,
then $f_{\mathbf{2}}$ is unique analytic continuation of $f_{\mathbf{1}}$ in $\boldsymbol{R}_{\mathbf{2}}$ and vice versa. We may regard f_{1} and \boldsymbol{f}_{2} as a single function \boldsymbol{f} in $\boldsymbol{R}=\boldsymbol{R}_{l} \cup \boldsymbol{R}_{2}$ such that

$$
f(z)= \begin{cases}f_{l}(z) & z \in R_{l} \\ f_{2}(z) & z \in R_{2}\end{cases}
$$

This theorem holds even if regions $\boldsymbol{R}_{\mathbf{1}}$ and $\boldsymbol{R}_{\mathbf{2}}$ have a common boundary B and $f_{1}=f_{2}$ on it. Then:

$$
f(z)= \begin{cases}f_{1}(z) & z \in R_{l} \cup B \\ f_{2}(z) & z \in R_{2} \cup B\end{cases}
$$

Which is analytic in $\boldsymbol{R}_{I} \cup \boldsymbol{R}_{2} \cup \boldsymbol{B}$.

Tm3. Continuation of analytic function \boldsymbol{f} from z_{0} to z_{1} along two paths is unique.

If two different values of function at \mathbf{z}_{1} are obtained, than $f(z)$ must have a branch point between these paths

Example. Let's consider function :
$f_{l}(z)=\sum_{n=0}^{\infty} z^{n}$ which is analytic for $|z|<1$.
$f_{l}(z)=\frac{1}{1-z}$ for $|z|<1$ and not defined for $|z|>1$
$f_{2}(z)=\sum_{n=0}^{\infty}\left(\frac{3}{5}\right)^{n+1}\left(z+\frac{2}{3}\right)^{n}=\frac{3}{5} \sum_{n=0}^{\infty}\left[\frac{3}{5}\left(z+\frac{2}{3}\right)\right]^{n}$ converges for $\left|z+\frac{2}{3}\right|<\frac{5}{3}$
Its sum is :
$f_{2}(z)=\frac{3}{5} \frac{1}{1-\frac{3}{5}\left(z-\frac{2}{3}\right)}=\frac{1}{1-z}$
Since the power series \boldsymbol{f}_{1} and \boldsymbol{f}_{2} represent tha same function in the
 Common region, they are analytic continuation of each other.
f_{1} is continued analytically into larger circle.

Schwarz reflection principle

Tm. Let $f(z)$ be a function that is analytic in a region \boldsymbol{R} that has a segment of real axis as a part of its boundary B. If $f(z)$ is real whenever is \boldsymbol{z} real, than analytic continuation $g(z)$ of function $f(z)$ into R^{*} (the mirror image of R with respect to the real axis x) exists and is given by:

$$
g(z)=f^{*}\left(z^{*}\right) \quad z \in R^{*}
$$

Since $f(x, 0)=g(x(0)$ on the part of real axis, there exist an analytic function $\boldsymbol{h}(\boldsymbol{z})$ such that:

$$
\begin{aligned}
& h(z)= \begin{cases}f(z) & z \in R \\
g(z) & z \in R^{*}\end{cases} \\
& \boldsymbol{h}\left(z^{*}\right)=g\left(z^{*}\right)=f^{*}(z)=h^{*}(z) \\
& f^{*}(z)=f\left(z^{*}\right)
\end{aligned}
$$

Dispersion relations

Consider an analytic function having a cut along $+\boldsymbol{x}$ axis for $\boldsymbol{x}_{\boldsymbol{0}} \leq \boldsymbol{x}<\infty$
as shown in a figure.
Fro Cauchy's integralformula:
$f(z)=\frac{1}{2 \pi i} \int_{C} \frac{f(\xi) d \xi}{\xi-z}=\frac{1}{2 \pi i}\left\{\int_{x_{0}+i \varepsilon}^{R} \frac{f(x+i \varepsilon) d x}{x+i \varepsilon-z}+\int_{C_{R}}+\int_{R}^{x_{0}-i \varepsilon} \frac{f(x-i \varepsilon) d x}{x-i \varepsilon-z}+\int_{C_{\rho}}\right\}$ Let's suppose that the integrals around $\boldsymbol{C}_{\boldsymbol{R}}$ and $\boldsymbol{C}_{\boldsymbol{\rho}}$ vanish as $\boldsymbol{R} \rightarrow \infty$ and $\rho \rightarrow 0$. Than:

$$
\begin{aligned}
& f(z)=\frac{1}{2 \pi i}\left\{\int_{x_{0}}^{\infty} \frac{f(x+i \varepsilon) \cdot d x}{x-z}+\int_{\infty}^{x_{0}} \frac{f(x-i \varepsilon) \cdot d x}{x-z}\right\} \\
& f(z)=\frac{1}{2 \pi i}\left\{\int_{x_{0}}^{\infty} \frac{f(x+i \varepsilon)-f(x-i \varepsilon)}{x-z} d x\right\} \\
& f(z)=\frac{1}{\pi} \int_{x_{0}}^{\infty} \frac{I m}{f(x+i \varepsilon)} d x \\
& x-z
\end{aligned}
$$

Dispersion relation expresses the value of an analytic function at any point of the complex plane
in therms of an integral of the imaginary part of the function on the upper edge of the cut.

If $f(z)$ is a function of physical interes, wemay write DR going to the limit $z=x^{\prime}+\boldsymbol{i} \varepsilon$
$f\left(x^{\prime}+i \varepsilon\right)=\frac{1}{\pi} \int_{x_{0}}^{\infty} \frac{\operatorname{Im} f(x+i \varepsilon)}{x-x^{\prime}-i \varepsilon} d x$

$$
=\frac{1}{\pi} P \int_{x_{0}}^{\infty} \frac{\operatorname{Im} f(x+i \varepsilon)}{x-x^{\prime}} d x+\frac{1}{\pi} i \pi \operatorname{Im} f\left(x^{\prime}\right)
$$

$\operatorname{Re} f\left(x^{\prime}\right)=\frac{1}{\pi} P \int_{x_{0}}^{\infty} \frac{\operatorname{Im} f(x)}{x-x^{\prime}} d x$,
where \boldsymbol{P} stands for 'Principal value integral' (Hauptwertitegral).
We used a very useful simbolic equation:
$\lim _{\varepsilon \rightarrow 0} \frac{1}{x-x^{\prime} \pm i \varepsilon}=P \frac{1}{x-x^{\prime}} \mp i \pi \delta\left(x-x^{\prime}\right)$.

If PVI does not converge, or $\boldsymbol{f}(\boldsymbol{x})$ does not fall to zero fast enough for numerical calculation, one may use so called once subtracted DR in which is introduced an extra factor of x^{\prime}
in denominator. Once subtracted DR may be obtained using as a function $f(z) /\left(z-z_{s}\right)$ instead of $f(z)$:
$f\left(x^{\prime}\right)=f\left(x_{s}\right)+\frac{x^{\prime}-x_{s}}{\pi} P \int_{x_{0}}^{\infty} \frac{\operatorname{Im} f(x)}{\left(x-x^{\prime}\right)\left(x^{\prime}-x_{s}\right)} d x$.
Formally, once subtracted DR may be obtained simply by calculating $f\left(x_{s}\right)$ using DR and subtract it from DR for $\boldsymbol{f}(\boldsymbol{x})$:
$\operatorname{Re} f\left(x_{s}\right)=\frac{1}{\pi} P \int_{x_{0}}^{\infty} \frac{\operatorname{Im} f(x)}{x-x_{s}} d x$,
$\operatorname{Re} f\left(x^{\prime}\right)-\operatorname{Re} f\left(x_{s}\right)=\frac{1}{\pi} P \int_{x_{0}}^{\infty} \operatorname{Im} f(x)\left(\frac{1}{x-x^{\prime}}-\frac{1}{x-x_{s}}\right) d x$
$\operatorname{Re} f\left(x^{\prime}\right)=\operatorname{Re} f\left(x_{s}\right)+\frac{x^{\prime}-x_{s}}{\pi} P \int_{x_{0}}^{\infty} \frac{\operatorname{Im} f\left(x^{\prime}\right)}{\left(x-x^{\prime}\right)\left(x-x_{s}\right)} d x$
Once subtracted DR

