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This is not a Course in Complex Analysis

This is not a Course in Complex Analysis

This is not a Course in Complex Analysis
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How the lectures will be organized?

Part 1         Complex analysis- repetitorium
From definition of complex number 
to contour integrals and analytic continuation

Part 2         Analyticity of invariant scattering amplitudes as an constraint 
in PWA.
Fixed-t DR- method of discrepancy function
Pietarinen’s method of convergence test function



ii) Multiplication                                           

iii) Division 

Complex algebra

Def. Complex number is defined by an ordered pair of
real numbers   𝑥, 𝑦 ∈ 𝑅, 𝑧 = 𝑥, 𝑦 = 𝑥 + 𝑖 ∙ 𝑦
where 𝑖 = 0,1 is imaginary unit. 

Complex conjugate number z* is defined as:

Algebraic operations with complex numbers.

i) Addition 
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Def.

For complex numbers                               hold following inequalities:

i)                                                  triangle inequality

ii)

Additional useful inequalities:

iii) 
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Graphycal representation of complex numbers

Since a complex number z=(x,y) is an ordered pair of real numbers,
It may be represented by point in x,y plane called complex plane. 

x and y axes are called real and imaginary axes
and complex plane – z plane
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Arg z is determined up to integer multiple of          
Principal range of argument:
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Using complex numbers           in polar form, multiplication 
and division are written in simple form: 
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Spherical representation of complex number
Extended complex plane

To each complex number z=x+iy in complex plane C  corresponds unique point on 
a unit sphere:
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Unique point N(0,0,1) corresponds to 
a point in infinity. 
South pole coresponds to z=0.

The set of complex numbers including 
Point at infinity is called extended complex 
plane
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Subsets in a complex plane

i) Real axis:                                 
ii) Imaginary  axis:                
iii) Line segment with end points                  
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Curves in the complex plane

Def. A curve is a range of continuous complex valued function 
defined in the real interval                        bta 

z(t)- parametrisation of curve C
z(a) is called initial point and z(b) final point of curve C

i) If x(t) and  y(t) are differentiable, curve is smooth

i) A curve is simple if it does not cross itself

iii) A path is a finite collection of simple curves

such that a final point of        coincides with
initial point of   

iv) A countur is a path whose curves are smooth.
When  the initial point of         coincides with the
final point of       , the contour is
simple closed conure.
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Examples

a) Simple curve

b) Not simple curve

c) Path

d) Simple closed counture
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v)   A curve is oriented. It goes from initial point z(a) to final point z(b).

vi)  We define a curve   ‘– C’ as a range of another function           having the   
same values as z(t)  but where initial and final values are reversed :

vii)    Any simple closed contour devides the complex plane into two domains.  
One is bounded and is called the interior of C. The other is called exterior.    

Contour is positively oriented if the interior is on its left side ( counterclock wise  

orientation). 
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Complex functions

Def. Complex function is a map                                                      
where both z and w are complex numbers ,                  .         

w)z(f,CC:f 
Cw,z 

Geometrically, f is correspondence between two
complex planes, z and w

u and v are real and imaginary parts of w
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Limits of complex functions- continuity
Limits of complex functions are defined in 
terms of modula of complex numbers.
The expression

means that for each real number ε >0 there 
exists a real number δ>0  such that:

We say that function f(z) is continuous at                
if                                      

In terms of functions u and v

0
0

w)z(flim
zz




δz-z wheneverw)z(f  00   

0zz 

)z(f)z(flim
zz

0
0




00

000000

0000

0

v)y,x(vlim,u)y,x(ulim

iff

viu)y,x(vi)y,x(u)z(flim

yxy,xyxy,x

zz

,,









  

                 



16

Elementary functions

i) Polnomial function

ii) Rational function

iii) Exponential function

iv) Trigonometric functions
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v) Hyperbolic functions

vi) Logarithmic function

vii) Invesre trigonometric functions

viii) Inverese hyperbolic functions

ix) Function 
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Multivalued functions, branch points, branch cuts....

Complex number in a polar form:

May lead to functions that can take different 
values at the same  point in the complex plane-
multivalued function.
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i) Consider function                         
After making a complete circuit around C in fig. A

ii) Consider function :

Encircling z=0 arround C starting at point z0 :
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What is the difference between the contours
in these two figures which makes the behaviousr of

and lnz so different ?
Answer: The first contour encloses the erigin z=0 
which the second does not. 
The origin is a branch point of functions         and ln z
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Branch points
always 

appear in pairs

cut. same the has  Function  

figure. a in  shown is  function a for cut Branch  

it.  cross to never agree and  

 points  branch  connecting  line a cut, branch  a introduces  one  it,  do To 

points! branchof  encircling Prevent  

one? edmulttivaluof  out function valued single a obtain to How  

 pairs. in appear  always points  Branch   

. point  branch  sole no  have  functions -situation general a is This  

.  and  :points branch two has   Function  

 . functionof  point branch a  also is infinity  

 that shows ,  around of   behaviour  Studying  

function. mutivaluedof  example einstructiv is  Function  
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It is to point out that a branch points of  an function are 
unique. 
Branch cuts are not. A cut along any path preventing 
encircling any of branch points  is allowed.
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surfaces. Riemannof  idea to leads  This     
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function. dmultivalue originalof   a      

called is sheet Riemann given a ondefined function valued single A      
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Derivative of complex function

Def. Derivative of a complex function f(z) at               is:

Provided that the limit exists and is independent of ∆z
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Example 1.
Check differentiability of function                                at point z=1+i
Let’s start from the definition:

Let’s approach z=1+i along the line :

We  obtain infinitely many values of derivative depending on m.
Conclusion: Derivative of function                                        does not exist at
the point z=1+i.
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Example 2.
Using the same way of approaching  z=1+i, show that function

does not have derivative at that point ( Even more: has not at any point !).
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Differentiability 
puts severe 
restrictions on
complex functions

!!
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Q: Are there any criteria which may tell us if a given complex function
is differentiable at a given point?

A:  Yes. 
The function                                                                
is differentiable at a given point in the complex plane iff the 
Cauchy- Riemann conditions

are satisfied and all partial derivatives of u and v are continues.
In that case:
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Analytic function

We are seldom interested in studying functions that are or are not  differentiable at a given point.
Complex functions that have a derivatives at all points in a neighborhood of a given point 
deserve a detailed study.

0z

Def. A function                       is called analytic  at       if it is differentiable at        
and at all points in some neighborhood of       .

A point at which f(z) is analytic is called regular point of f.

A point at which f is not analytic is called a singular point or a singularity of f.
If function f is analytic at each point in the region            , we say that function f is analytic in R .

CC:f  0z 0z

0z

CR 
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Formal rules for differentiation for real functions  may be applyied to complex functions.
i) Let f and g be analytic in some region                              

Then: λf, f+g, and f ̇∙g are analytic functions and:

Consequence: As  f(z) =z  is analytic function in C , then any polynomial 

is analytic in C.

ii) Let f be analytic in R then, providing that f(z)≠0, then 1/f(z) is analytic function and
its derivative is given by:

Consequence: Any rational function                          is analytic in C except points where 
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Contour integrals

Let complex function  f(z) be continuous along a smooth curve C.

For each arc joining       and          choice one point      
and form a sum:

Quantity

is called complex line integral or line integral of f(z)
along curve C. 

From definition it is clear that integration along curve 
‘-C’ gives result of oposite sign:
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The integral                       may be cast in another form: 

Obtained formula reduce calculation of contour integral to calculation of integral
of  complex function over real interval   a≤ t≤ b              
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Simply and multiply connected regions

Def. A region R is called simply connected 
if any simple closed conture which lies in R
can be shrank to a point without leaving R. 
A region R which is not simply connected 
is called multiply connected.
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Cauchy’s theorem

Cauchy’ s theorem, also known as Cauchy- Goursat theorem is the most important 
theorem in complex analysis.

Tm. Let    f(z)     be analytic on a simply closed contour C and in all points inside C.
Then:

 

C

0dz)z(f  
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Simple Direct  Consequencies

i) If f (z) is analytic in a symple connected region R, then 
the integral:

Does not depend of the path in R joining points         and       .


2

1

z

z

dz)z(fI

1z 2z

Example:
Calculate integral

Along curves:


C

zdzI


















1011

10

102

102

3

2
2

1

t),t(i

t,t
)t(z:C

t,tit)t(z:C

t,tit)t(z:C
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ii) Deformation of contour

Let C1 and C2 are two simple positively oriented contours such that
C1  lies interior to C2.

If f(z) is analytic in  a region R containing both contours than:

Complicated contours may be replaced by simpler one.

Integrals along cross cut cancel out.

 

1C 2C

dz)z(fdz)z(f   



























1C2C

2C4C3C

1CC

dz)z(fdz)z(f

0dz)z(fdz)z(fdz)z(f

dz)z(fdz)z(f

  

                     

  

Whatever you do, you do the same !



33

Cauchy-Goursat theorem for multiply connected regions

Multyply connected region may be reduced to simply connected 
one using cross cut(s) as shown in a drawing.  
As in previous case, integrals along cross cut cancel out.

0dz)z(fdz)z(fdz)z(f

2CC 1C

      
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Cauchy’s tm

Cauchy’s integral 
formula

Liouville’s tm

The max. modulus tm

Cauchy’s formulas 
for derivatives

Taylor’s tm

Analyticity immplies
Infinite differentiable

Morrera’s tm
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Cauchy’s integral formula

Amazing formula: Gives value of an analytic function in every point inside a simple
closed contour when its value on the contour is given.

An analytic function is not free to change inside a region once its values are fixed 
on the contour enclosing that region.

Tm. Let  f(z)  be analytic function on and inside a positively
oriented contour C. 

Than, if        is inside contour:

if         is outside contour then                         .

 


C
zz

dz)z(f

i
)z(f

0

0
2

1



0z

0z  00 )z(f
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Liouville’s theorem

Def.  Function is bounded in a region R   if there is a constant M such that                        

Tm. Let f(z) be analytic and bounded in the whole complex plane C. 
Than function f(z) is constant

M)z(f 

The maximum modulus theorem

Tm. The absolute value of an analytic 
function f(z) can not have a local maximum 
within a region R of analyticity of the 
function.  Maximum can be achived only on 
the border of R.
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Cauchy’s formula for derivatives

Tm.  Let f(z) be analytic inside and on the boundary C of a simple connected region R.

Derivatives of all orders of function f(z) exist in a region R and are themselves 
analytic functions in the same region
The n-th derivative is given by:

 


C

n

)n(

)zz(

dz)z(f

i

!n
)z(f

1
02

 



Reminder: We defined analytic function in a region R as a complex function having 
a first derivative.

Theorem claims that, being analytic, function is infinitely derivable.

!
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Morrera’s theorem

Tm. Let function f(z) be continuous in a simple connected region R.
If for  each simple closed contour C in R  holds:

then f is analytic in R.

 

C

dz)z(f 0

Morrera’s TM. Is converse of Cauchy’s formula. It serves as a tool 
to identify analytic function in a given simple connected region. 
It is also an integral analog of Cauchy- Riemann relations.

Continuity
+

 

C

dz)z(f 0 Cauchy-
Riemann

Analyticity



39

Digression- Power series

i) A function                                           

is called power series.
Power series converges if                       and diverges if                     .
We call the number ρ radius of convergence of the power series.

ii) A power series is said to converge absolutely if  the real series

converges.

n

n

n )zz(c)z(S 0

0






 0zz  0zz

n

n

n )zz(c)z(S 0

0





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Digression –Power series

iii)  If power series                                      converges for                 ,

then it converges absolutely  for every value   z such that                                 .

Similarly, if power series                          converge for               then it converges absolutely 

for every z such that 

n

n

n )zz(c 0

0





01 zz 

010 zzzz 







0 0n

n

n

)zz(

b

020 zzzz 

02 zz 
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iv)     Convergence of                                      means that for partial sums                                      and ε<0

exists an integer          such that                                            .
If         is the same for all z inside the circle of convergence, than connvergence is uniform.

v) The power series                                      is uniformply convergent for all points within its circle of 

convergence and represents a function that is analytic there.

If the power series                               converge in an anulus                                      then it is uniformly 

convergent and represents analytic function there. 

vi) Uniformly convergent power series can be :
a) differentiated term by term within the circle of convergence:

b)Integrated term by term along any curve which lie entirely inside its circle of convergence:

n

n

n )zz(cS 0

0






n

N

n

nN )zz(cS 0

0




N  NN     ,SS N

N

n

n

n )zz(cS 0

0












0 0n

n

n

)zz(

b
102 rzzr 

n

n

n

)zz(cn
dz

)z(dS
0

1






dz)zz(cdz)z(S
n

CC n

n   





0

0

 

Digression –Power series
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Taylor and Laurent series.

Taylor’s  Tm. Let f be analytic function in interior of the circle C centered 

at       and having radius      . Then at each point z inside C:
0z 0r

n

n

)n(

)zz(
!n

)z(f
)z(f 0

0

0 




The region of convergence  is determined by                        where       is 

the distance from        to nearest singularity of the function f(z).
00 rzz  0r

0z
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Taylor and Laurent series

Taylor’s expansion requires that function f(z) has no singularities
inside the circle of convergence. In many occation there 
may exist singularity in a region of interest. 
In this case function may be given by a so called Laurent 
expansion. 

Tm. Let C1 and C2 be circles in the z plane centered at z0 with 

radii r2<r1 .Let f(z) be analytic on C1 and C2 and in an annular 

region R between them.
Then for each             , f(z) is given by:

C  is any positively oriented contour within R.

Rz














C

nn

n

n

n

)z(

d)(f
c

)zz(c)z(f

0

0



  
     

-
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i) Laurent series converges for                               .

ii)      If                                                                      

In that case, Laurent series recover Taylor series (as it should be).

iii)    Part with nonnegative powers of (z-z0) 

is called analytic or regular part of Laurent series.
iV)   Part which consists of inverse powers of (z-z0) 

is called principal part.
Complex number, coefficient 

is called residue and is denoted by 

102 rzzr 

... 2,- -1,n     , c ,r n 002

n

n

n )zz(c 0
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
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. . .)zz(c
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1

0
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0





 




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


C

dz)z(f
i

c  
2

1
1

     )(zfsRec 01 

region. this in expansion 

 series Laurent unique the is it than about 

region annular some in   function analytic 

to converges c series theIf   
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 -n
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f(z)

)zz(

ansionexpurent  of the LaUniqueness

0
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0



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Singularities of complex functions

Def. Let f(z) be a complex valued function. 

Singular point  z0 is a point at which f(z) is not analytic.
If there is an neighborhood

where f is analytic except z0 , then z0 is isolated singular point.

rzz  00

Classification of singularities of analytic function f is possible 
by examination of its Laurent expansion.
There are several kinds of singularities:
i) Removable 
ii) Poles
iii) Essential 
iv) Branch points

Isolated singular point

Classification of singularities
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Removable singularities

A point z=z0   is called removable singularity if function f(z)
is not defined at z=z0 but                    exists.

Examples: 

)z(flim
0zz  

2

1

z

z1e
,

z

z1e
)z(f

1
z

zsin
,

z

zsin
)z(f

2

z

0z
2

z

0z

lim

lim












 

 

Poles
Let principal part of Laurent expansion of analytic function f(z)
around z=z0     has only a finite number of terms:

Then function f(z) has a pole of order m.

If m=1, pole is called  simple pole.

mn    ,c,c nm 00




)z(flim
z 0
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Essential singularities Def. If the principal part of Laurent expantion around point z0  has 

Infinite number of terms, then z0 is essential singular point 
of function f(z)

In the neighborhood of essential singularity an, otherwise analytic 
function f(z) may take any value except possibly one.
Example :
Z=0 is essential singularity of   

z approaches 0 along +x

z approaches 0 along –x

z approaches zero along +iy


























oscilating

- z

z

n
n

z

z

elim

z!n
e

e)z(f

1

0

0

1

1

11
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Branch point A point z0  is   called branch point of a multivalued function f(z) if the branches of f(z)

interchanged when z describes a closed path around z0.

Branch point is not an isolated singular point because any circle around z0 leads 
to interchange of branches of multivalued function.

Examples:

have a branch point at z=0(z)   lnf(z)z)z(f   and  

Singularities at infinity By letting z=1/w in function f(z), we obtain the function
.

The nature of singularity at z=∞ is defined to be 
the same as that of F(w) at w=0

)w(f)w(F 1

Examples:
Function                      has the pole of order 3 at infinity becuse                             
has a pole of order 3 at zero.
Function                     has essential singularity at infinity because function                          
has essential singularity at zero.   

3
z)z(f  31 w/)w(F 

z
e)z(f  z

e)w(F
1
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Classification of functions

where P and Q are polynomials . 
Meromorphic in entire complex plane.

If  function f(z) is meromorphyc in entire complex plane , 
than f(z)  is rational function                                

)z(Q

)z(P
)z(f

m

n

Laurent expansion of analytic function may serve as definition of two kinds of analytic functions

- Analytic everywhere except at z=∞
- Can be represented by Taylor series which has an infinite radius of convergence.

Examples:                                    zcos,zsin,e
z   

- All singularities in a give region R are isolated poles and removable singularities -
By definition, meromorphyc functions have no essential singularities

Example:                                             analytic everywhere except simple pole at z=1 and
a second order pole at z=-3  

231 )z()z(

z
)z(f




Entire

Meromorphic

Rational
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The Cauchy’s residue theorem

The residue theorem has the same significance for meromorphic functions in range R as 
Cauchy’s formula for functions analytic in R.

 
C

dz)z(f 0 



C

z

d)(f
)z(f



 Cauchy’s residue theorem
for function having poles  inside
contour C

Analytic inside contour C

C
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Cauchy’s residue theorem

Let f(z) be analytic function inside and on the positively oriented contour C 
except for a finite number of poles at points z1,...,zn .
Then 

     
 kC

k

n

1k

k

C

dz)z(f
i2

1
)z(fsRe,)z(fsRei2dz)z(f  

 
         



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Analytic continuation

Motivation: It is often tha case that analytic function f(z) is 

given in a limited region R. 
We may ask the question:

Is it possible to extend the function beyond R
Answer: Yes, under certain conditions.

Suppose we do not know precise form of the analytic 

function inside the circle of convergence C1  with radius

of convergence r1 . f(z) is represented by a Taylor 
expansion:

1. Calculate f(z) and all its derivatives in point z2   inside C2   

and  arrive to expression: 

having circle of convergence C2 and radius of convergenc r2  

( no singularity on C1 inside C2  ).

2. Repeat this procedure until arrive to point zn

n

n
n )zz(a)z(f 0

0

 




n

n
n )zz(b)z(f 0

0

 



Q:
Is analytic continuation unique?
Shall we  obtain the same result using Pat2 
instead of the Path1?

We say that f(z) is extended analytically beyond C1. 
The procedure is called analytic continuation.
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Fundamental theorems

Tm1. If the function f is analytic in a region R and vanisches

in neighborhood of             or for a segment of curve in R.
Then it vanishes identically in this region

Rz 0
Let f1 and f2 are analytic in R. If  f1=f2 in a neighborhood 
of a point z, or for a segment of curve in R, 
then f1=f2 in R.
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Tm2. Let f1 and f2 be analytic in regions R1 and R2 respectively. 

Suppose f1 and f2 have different functional forms in their 
respective regions of analyticity . If there is an overlap between 

R1 and R2 and if f1=f2 within that overlap, 

then f2 is unique analytic continuation of f1 in R2 and vice versa. 

We may regard f1 and f2 as a single function f in                     such that










22

11

Rz)z(f

Rz)z(f
)z(f

21 RRR 

This theorem holds even if regions R1 and R2

have a common boundary B and f1=f2 on it. 
Then:

Which is analytic in                       . 










BRz)z(f

BRz)z(f
)z(f





22

11

BRR  21

Tm3. Continuation of analytic function f from 

z0 to z1 along two paths is unique. 

If two different values of function at z1 are 

obtained, than f(z) must have a branch point 
between these paths
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Example. Let’s  consider function :

Since the power series f1 and f2 represent tha same function in the 
Common region, they are analytic continuation of each other. 

f1 is continued analytically into larger circle.
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Schwarz reflection principle

Tm. Let f(z) be a function that is analytic in a region R that has a segment of real axis as a part of its boundary B.

If f(z) is real whenever is z real, than analytic continuation g(z) of function f(z) into R* ( the mirror image of R
with respect to the real axis x) exists and is given by:

***
Rz)z(f)z(g       

Since f(x,0)=g(x(0) on the part of real axis,
there exist an analytic function h(z) such that:










*
Rz)z(g

Rz)z(f
)z(h

)z(f)z(f

)z(h)z(f)z(g)z(h

**

****




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