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This is not a Course in Complex Analysis
This is not a Course in Complex Analysis

This is not a Course in Complex Analysis



How the lectures will be organized?

Part 1 Complex analysis- repetitorium
From definition of complex number
to contour integrals and analytic continuation

Analyticity of invariant scattering amplitudes as an constraint

in PWA.
Fixed-t DR- method of discrepancy function

Pietarinen’s method of convergence test function

Part 2



Complex algebra

Def. Complex number is defined by an ordered pair of
real numbers x,y €R, z=(x,y) =x+i-y
where i = (0,1) is imaginary unit.

Complex conjugate number z* is defined as:

*=(X=y)=X=l-y
Algebraic operations with complex numbers.

i)  Addition

Z2=21+2;=(X, Y1)+ (X5, ¥ )=(X + X5, Y1+ Y;)
=(X + X )+1-(y+Y,)

2,+2,=2,+2

(21+7,)+23=(2,+7, )+ 74

2, =—-2=(=X~Y)

Z+(-2)=0=(0,0)

ii) Multiplication

Zy-2, = (X, Y1) (X3, Y,)

= (XX = Y1Y2, X Y2 + X, ¥ )
2,:(2,-23)=(2,-2,) 74
2,(2,+23)=12,-2,+7,- 74

iii) Division

&y _ Xp+1-y, X +0-y X —l-y,

Xo+1:Y, X,—1-Y,
. X — X
4 23’; 23’2

X, +Y,

Z, X,+1-Y,

_ X X+ Y Y,
- 2 2
X, +Y,




Norm or modulus of complex number

pet.  |z|=yx2+y?=4z-7", [7eR

For complex numbers Zy,L, € C hold following inequalities:

i) ‘Zl + 22‘ < ‘21‘ + ‘Zg‘triangle inequality
i) |2°20, |4=0=>z=0
Additional useful inequalities:

i) Re Z‘S‘Z‘; \Im Z‘S‘Z‘

V) |z,+2)2 Hzl‘_‘ZZH



Graphycal representation of complex numbers

Since a complex number z=(x,y) is an ordered pair of real numbers,
It may be represented by point in x,y plane called complex plane.

x and y axes are called real and imaginary axes
and complex plane — z plane




Polar representation of complex number

§Z(w,y)

»

Arg z is determined up to integer multiple of 27
Principal range of argument:

—nT<0<r

X=Tr-c0s6

y=r-sing
Zz=r(cos@+i-sin@)=r-e"
@ =argz

e27r-i -1

Using complex numbers Z,,Z, in polar form, multiplication
and division are written in simple form:

Zl ° 22 - rl ¢ r2 'el(€1+€2)

4N Lic61-62)
L I




Spherical representation of complex number
Extended complex plane

Unique point N(0,0,1) corresponds to
a point in infinity.
South pole coresponds to z=0.

C The set of complex numbers including
Point at infinity is called extended complex

plane

To each complex number z=x+iy in complex plane C corresponds unique point on
a unit sphere:
X y o X+ y?

X = Y= | =
14+ X%+ y? 14+ X%+ y? 14+ X%+ y?




Subsets in a complex plane

Real axis: Imz=0: z=1z*

Imaginary axis: Rez=0

Line segment with end points Z,,2, €C

z2(t)=(1-t)-z,+t-z,,

0<t<1

iv) Circle of radius r with center in £
z—1z|=T
(X=% ) +(y=Y,) =r"

X=X, =rcosé
y—Y,=rsinéd

z=12,+r-e"°, —7z<6<rx




Curves in the complex plane

C:z(t)=x(t)+1-y(t)

z(t)- parametrisation of curve C
z(a) is called initial point and z(b) final point of curve C

If x(t) and y(t) are differentiable, curve is smooth

A curve is simple if it does not cross itself

t,=t,; z(t)=z(t,)

A path is a finite collection of simple curves

{21 ’ 22,...Zn}

such that a final point of Ly coincides with
initial point of Z, 4

A countur is a path whose curves are smooth.
When the initial point of Z; coincides with the
final point of Z,, the contour is
simple closed conure.
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Examples
a) Simple curve
b) Not simple curve
c) Path

d) Simple closed counture



v) A curve is oriented. It goes from initial point z{a) to final point z(b).

vi) We define a curve ‘= C’ as a range of another function }/(t ) having the
same values as z(t) but where initial and final values are reversed :

C : z(t)
—-C:yt)=z(a+b-t)
vii) Any simple closed contour devides the complex plane into two domains.

One is bounded and is called the interior of C. The other is called exterior.
Contour is positively oriented if the interior is on its left side ( counterclock wise

orientation).




Complex functions

Geometrically, fis correspondence between two Z (Qj, y)
complex planes, zand w

f(z)=w(Xx,y)=u(x,y)+1-v(X,y)

u and v are real and imaginary parts of w (
a) (b)
Example:
f(z)=w=12°
(Y
W=(X+iy) =x>—y>+i-2xy yA@ A@
2 _ 2 . Range
U=x"-y*, Vv=2xy Domain R
It maps for instance: y=mx to D
u=(1-m?)x*; v=2mx* % %
2m
V=" U (¢) (d)




Limits of complex functions- continuity

Limits of complex functions are defined in
terms of modula of complex numbers.
The expression

lim f(z)=w,

L1

means that for each real number € >0 there
exists a real number 6>0 such that:

| f(z)—w,|< &whenever |z-zy|<

We say that function f(z) is continuous atz =z,
if lim f(2)=f(z)

Z—)Zo
In terms of functions u and v

lim f(zZ)=u(Xy, Yo )+1-V(Xg,Yo)=Uy+1-V,

iIff

lim u(x,y)=Uu,, lim V(X,y)=V,
X, Y= Xg Yo X, Y—=>Xo,Yo




Elementary functions

i) Polnomial function
P(z)=a,+a,z+..+a,2" @& ,zeC

ii) Rational function

iii) Exponential function
w(z)=e‘=e"(cosy+siny)

e2nﬂ'i =1

21

Z z 71412 Z1-1Z
el.ez=e1+2 =e12

e“?
iv) Trigonometric functions

sihz=———, (COSZ=

iz —iz iz —iz
e

sinz C0oS Z
tgz=——, ctgz=—
COS Z sinz

v) Hyperbolic functions

: e’ —e”’ e‘+e”’
smhz=T, coshz = T
sinh z coshz
tghz = , Ctgh=—
coshz sinh z

vi) Logarithmic function

Inz = In(r-em”“’”): Inr+i@+2nri
Principal branch :
Inz=Inr+168, —-n<6<~x

vii) Invesre trigonometric functions
viii) Inverese hyperbolic functions

ix) Function

w(z)=z%=e

a-Inz




Multivalued functions, branch points, branch cuts....

Complex number in a polar form:

z=re'™?  argz=0+2nx
May lead to functions that can take different
values at the same point in the complex plane-
multivalued function.

.0
Ii
2

i) Consider function f(z)= \E = f(r,0)=re
After making a complete circuit around Cin fig. A

2(ry,0,)=12(r,,6, +2x)
.00 +27

f(r,,0,+27)="re 2

)
=Jre 2 .e" =

%
=—Jre 2 =—f(r,,6,)
f(r,,6,+2x)= f(r,,6,)

ii) Consider function :
f(z)=Inz=In(re'¥"?)
f(z)=Inr+iargz=Inr+i@+i2nx

Encircling z=0 arround C starting at point zo:

2o(1y,0+27)=12,(1,,0)
In(z,(r,,0+27))=Inr+i0+ 27
In(z,(r,,0))=Inr+i0

In(z,(r,,0+ 27 ))-In(z,(r,.0))= 27




What is the difference between the contours

in these two figures which makes the behaviousr of
\E and Inz so different ?
Answer: The first contour encloses the erigin z=0
which the second does not.

The origin is a branch point of functionsﬁ and In z

Def. The point z, is called abranch point for the complex

multivalued function f(z) if the value of f(z)doesnot return (//

to its initial value asaclosed curve around

Z, is traced (starting at some arbitrary pointon the curve).

Important : What maters indef. of branchpoint is thelocalbehavour of function
f(z) near z,. Forexample, consider In(z), takeapoint z' andacontour C around it
(thatalso enclose z=0). The value of In( z ) willchange as this curveis traced

but z' isnotabranchpointof In (z.). For contour C' close to z'

thereisnochange of In(2).

Hence, pointz' isnotabranchpoint of function In(z).



Branch points
Function In(z)is instructive example of mutivalued function. always
Studying behaviour of In(1/z) =-In(z)around z =0, shows that appear in pairs
infinity is also abranchpoint of function f(2).
Function In(z) hastwobranchpoints:z=0andz = .
Thisisageneralsituation - functions have nosole branch point. @

Branch points always appear inpairs. O=+wr—¢
D,

How to obtain asingle valued function out of multtivalued one? O=-rm+e z=0
Prevent encircling of branch points!
Todo it, one introduces a branch cut, aline connecting branch points

Branch cut
andagreenever tocross it.
Branch cut for afunction In(z) isshown inafigure.
Function /z has the same cut.

Discontinuity of function Inz across the cut.

It is to point out that a branch points of an function are Dis=[Inr+i(z—¢&)]-[Inr+i(-z+¢)]=2iz - 2ic
l unique. _ lim Dis = 2iz = 2i Im(Inr +ix)
e Branch cuts are not. A cut along any path preventing £0
encircling any of branch points is allowed.




Branches of multivalued functions
Let's define aset of functions
f (@)= f (r0r=INr+i10+2nix, -x<@<zm n=0]1,..
Observe:
fo (h—m+e=Inr—iz+ie+2(n+1)ix
=Inr+ie+(2n+1)ix
f(rr+m—g=Inr+izx—le+2nix
=Inr—-iz+(2n+1)ix

limf,_ (r-a+g=Ilimf (r+7—¢

e—0 e—0

Value of f justabove thecutisequaltovalueof f,,,
justbelow the cut!

This leads toidea of Riemann surfaces.

O=+mw—¢

O=—m+¢




Riemann surfaces ( for Inz )

i) Superpose aninfinite number of cut complex planes one on

top of the other, eachplane corresponding to different value of n.

In applications:

i) Connect adjecent planesalong acutinsuchaway that IR el [l e
given function

thelower edge of the n,, plane isconnected toupper edge
of (n-l)h plane ii) Cut the plane to avoid encircling
L :

of the branch points
All planes contain two branch points

In this construction, if we cross a cut we end up on a different plane. | | il ipeCifV branch- single valued
unction

The surface constructedinsuchaway is called Riemann surface.
Eachplaneiscalled Riemann sheet. For functions In(z)and+/z
principal barnches are defined as
Inz)=Inr+i8 -w<fl<n=x
abranch of originalmultivalued function. Jz=rY2%92  _pco<n

A single valued function defined onagivenRiemannsheet s called




Derivative of complex function

22



Example 1.
Check differentiability of function f(z)=x*+2i-y* at point z=1+i
Let’s start from the definition:

df(z) o f(l+i+4z2)- f(1+1)
— = lim
dZ 7=1+i Az72->0 AZ
. 2AX+4iAy+(AX)* +2i(4y)’
= |lim -
AX—>0 AX+14y
Ay—0

Let’s approach z=1+i along the line :

y=1l+m(x-1), dy=m-A4x

then
df(z) _2+4im
dz T 1+im

z=1+i

We obtain infinitely many values of derivative depending on m.
Conclusion: Derivative of function f(z)= X%+ 2i - yzdoes not exist at
the point z=1+i.

Example 2.
Using the same way of approaching z=1+i, show that function

f(z)=2 =x—i-y

does not have derivative at that point ( Even more: has not at any point !).

Differentiability
puts severe
restrictions on
complex functions



Cauchy- Riemann conditions

Q: Are there any criteria which may tell us if a given complex function
is differentiable at a given point?

A: Yes.

The function f(z)=u(X,y)+1-v(X,Yy)

is differentiable at a given point in the complex plane iff the
Cauchy- Riemann conditions

ou(x,y) _ov(X,y) ou(x,y)__ov(Xx,y)
OX oy oy OX

are satisfied and all partial derivatives of u and v are continues.
In that case:

df(z)=6u(x,y)+i8v(x,y)=6v(x,y)_i6u(x,y)
dz OX oy oy OX




Analytic function

We are seldom interested in studying functions that are or are not differentiable at a given point.
Complex functions that have a derivatives at all points in a neighborhood of a given point Z,
deserve a detailed study.

<y
<
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Formal rules for differentiation for real functions may be applyied to complex functions.
i) Letfand g be analyticin some region RcCandAeC
Then: Af, f+g, and f -g are analytic functions and:

[Af ()] =4-F(2), [(f(2)+9(z)]=f(2)+g(2)
[f(2)-9(2)] = f'(2)-9(2)+ f(2)-g(2)

Consequence: As f(z) =z is analytic function in C, then any polynomial

N
Pn(z)= chzn
=1
is analytic in C. ’

ii) Let fbe analytic in R then, providing that f(z)#0, then 1/f(z) is analytic function and
its derivative is given by:

[ 1 ]'__f'(z)
f(z)]  f(z)?
P.(2)

Consequence: Any rational function f(z)= 0 (2) is analytic in € except points where

Qn(z)=0




Contour integrals

Let complex function f(z) be continuous along a smooth curve C.

For each arc joining Zx and Z,,, choice one pointé,
and form a sum:

n

$,=Y F(6)(z-20)=Y 1(&)-42,

k=1

Quantity
HmSn=IfU)dz

n— o0
C

is called complex line integral or line integral of f(z)
along curve C.

f(z)=u(x,y)+i-v(Xx,y)
jf(z)dz=j(u(x,y)+i-v(x,y))-(dx+idy)

C

T =ju(x,y)dx—v(x,y)dy+ijv(x,y)dX+U(X,Y)dy

C C

From definition it is clear that integration along curve
‘-C’ gives result of oposite sign:

If(zmz=-jf(zmz




The integral I f(z)dz may be cast in another form:

=Z f(fk) — ke (t —t_y)= 2 f(fk)jjk’ﬁtk
k=1 Ty

_tk—l k=1 k

b
lim S, =j f(z)dz=j f((z(1))Z(t)dt

Nn—>o0

Obtained formula reduce calculation of contour integral to calculation of integral
of complex function over real interval a<tsb




Simply and multiply connected regions

AR AR




Cauchy’s theorem

Cauchy’ s theorem, also known as Cauchy- Goursat theorem is the most important
theorem in complex analysis.

Tm. Let f(z) be analytic on a simply closed contour € and in all points inside C.

Then:
jf(z)dz=o
C

A2




Simple Direct Consequencies

i) If f(z) is analytic in a symple connected region R, then
the integral:

I=Tf(z)dz

Does not depend of the path in R joining points Z, and Z,.

Example:
Calculate integral

I=Izdz

C

Along curves:
C,oiz(t)=t+2i-t, 0<t<L1
C,:z(t)=t+2i-t*, 0<t<1

C. 2(t)= t, 0<t<1
TV 1+ (t-1), 0<t<1




ii) Deformation of contour

Let C1and Czare two simple positively oriented contours such that
C1 lies interior to C2.

If f(z) is analytic in a region R containing both contours than:
j f(z)dz= j f(2)dz
C1 C2

Complicated contours may be replaced by simpler one.

jf(z)dz:jf(z)du

+ jf(z)dz+jf(z)dz -jf(z)dz=o

jf(z)dz:jf(z)dz

Integrals along cross cut cancel out.

Whatever you do, you do the same !




Cauchy-Goursat theorem for multiply connected regions

Multyply connected region may be reduced to simply connected
one using cross cut(s) as shown in a drawing.
As in previous case, integrals along cross cut cancel out.

jf(z)dz:jf(z)dz—jf(z)dz=o
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Cauchy’s integral formula

Amazing formula: Gives value of an analytic function in every point inside a simple
closed contour when its value on the contour is given.

An analytic function is not free to change inside a region once its values are fixed

on the contour enclosing that region.

35




Liouville’s theorem

The maximum modulus theorem

36



Cauchy’s formula for derivatives

Reminder: We defined analytic function in a region R as a complex function having
a first derivative.
Theorem claims that, being analytic, function is infinitely derivable.

37



Morrera’s theorem

Continuity
+

Morrera’s TM. Is converse of Cauchy’s formula. It serves as a tool
to identify analytic function in a given simple connected region.
It is also an integral analog of Cauchy- Riemann relations.

<+

N
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Digression- Power series

i) A function

S(z)=icn(z—zo)n yA@

is called power series. Convergence
Power series converges if \Z — Zo\ < P and diverges if \Z — Zo\ > p.

P Divergence
We call the number p radius of convergence of the power series. 20
) - . . may be unknown
ii) A power series is said to converge absolutely if the real series
(0 0]
n
S(z)= Z‘Cn‘ (2=2,)"| converges.
n=0

T




Digression —Power series

iii) If power series ch(z —2,)"  converges for Z, # 2, ,
n=0

then it converges absolutely for every value zsuch that ‘Z - Zo‘ < ‘21 — L ‘
(0.0) bn

Similarly, if power series Z—n
n=0 ( Z— ZO )

for every z such that ‘Z — Zo‘ > ‘22 — Zo‘

converge for Z, # Z,then it converges absolutely

Convergence of

Convergence of

1 icn(z — 20) ! &S by
20 z=0 ° ?’LZ:O (z—20)"




Digression —Power series

n=0

o N
iv) Convergence of S = ch(z —2,)" means that for partial sums Sy = ch(z —2,)" and <0
n=0

Vi)

exists an integer Ng such that ‘S = Sy ‘ <&, N>N, .
If Ng is the same for all z inside the circle of convergence, than connvergence is uniform.

The power series S = ch(z —2,)" is uniformply convergent for all points within its circle of

n=0
convergence and represents a function that is analytic there.
N b, : L
If the power series Zﬁ convergeinananulus I, < ‘Z — Zo‘ <1, thenitis uniformly
Z—1

convergent and represents analytic function there.

Uniformly convergent power series can be : ds(z) %
a) differentiated term by term within the circle of convergence: = Z n-c.(z-z, )"
n=1

dz

b)Integrated term by term along any curve which lie entirely inside its circle of convergence:

IS(z)dz=icnI(z—zo )"dz




Taylor and Laurent series.

The region of convergence is determined by‘Z — Zo‘ <, where I is
the distance from Z; to nearest singularity of the function f(z).

42



Taylor and Laurent series

Taylor’s expansion requires that function f(z) has no singularities
inside the circle of convergence. In many occation there
may exist singularity in a region of interest.

In this case function may be given by a so called Laurent
expansion.

13




i) Laurent series converges for I, < ‘Z — ZO‘ <rn.
i) if =0, = ¢,=0,n=-1,-2,...
In that case, Laurent series recover Taylor series (as it should be).

iii) Part with nonnegative powers of (z-2o)

ch(z—z0 )"
n=0

is called analytic or regular part of Laurent series.
iV) Part which consists of inverse powers of (z-zo)

1

C C
ch(z—zo)”=.. =0 4+
N=—o0

.(Z_Zo)n (Z_Zo)

is called principal part. 1
Complex number, coefficient C_; = ﬁ-‘- f(z)dz
C

is called residue and is denoted by

c_,=Res[ f(z)]

44




Singularities of complex functions

Isolated singular point

Classification of singularities of analytic function fis possible
by examination of its Laurent expansion.

There are several kinds of singularities:

i) Removable

i) Poles

iii) Essential

iv) Branch points

Classification of singularities

45



Removable singularities

Poles

46



Essential singularities

In the neighborhood of essential singularity an, otherwise analytic
function f(z) may take any value except possibly one.

Example :
Z=0 is essential singularity of
f(z)=e?
o0
e’ = T a
i 00 z approaches 0 along +x
- 1/z
lime™* = - 00 z approaches 0 along —x
z—0 L
\OSCIIatmg z approaches zero along +iy

47



Branch point

Examples:

f(z)=+/z and f(2)=In(z) have a branch point at z=0

Singularities at infinity

Examples: . .
Function T(Z)=Z" has the pole of order 3 at infinity becuse F(w)=1/w
has a pole of order 3 at zero.

Z
Function f (Z)=€" has essential singularity at infinity because function F(w )= el

has essential singularity at zero.

—F




Laurent expansion of analytic function may serve as definition of two kinds of analytic functions

Entire

Meromorphic

Rational

Classification of functions

Examples: e’ ,SINz,Cco0sz

Z
(z-1)-(z43)?

Example: f(z)=

analytic everywhere except simple pole at z=1 and

a second order pole at z=-3

=7



The Cauchy’s residue theorem

The residue theorem has the same significance for meromorphic functions in range R as
Cauchy’s formula for functions analytic in R.

yA@

(@)

T
(b)

[ f(z)dz=0

f(rf)dﬁ

f(z)= j

Analytic inside contour C

Cauchy’s residue theorem
for function having poles inside
contour C




Cauchy’s residue theorem

Let f(z) be analytic function inside and on the positively oriented contour C
except for a finite number of poles at points zi,...,zn .

Then n
jf(z)olz:2fziZRes,[f(zk )], Res[f(z, )]=$J‘f(z)dz
C k=1 Ck




Analytic continuation

Motivation: It is often tha case that analytic function f(z) is
given in a limited region R.

We may ask the question:

Is it possible to extend the function beyond R

Answer: Yes, under certain conditions.

Suppose we do not know precise form of the analytic
function inside the circle of convergence C1 with radius

of convergence r1 . f(z) is represented by a Taylor
expansion: ©
f(z)=2a,(z-2)"
n=0
1. Calculate f(z) and all its derivatives in point 22 inside C2
and arrive to expression:

f(2)=Yb,(2-2, )

having circle of convergence C2 and radius of convergenc r2
( no singularity on C1 inside Cz2 ).
2. Repeat this procedure until arrive to point zn

We say that f(z) is extended analytically beyond Ci.
The procedure is called analytic continuation.

Q:

Is analytic continuation unique?

Shall we obtain the same result using Pat2
instead of the Path1?




Fundamental theorems

Let f1 and f2 are analyticin R. If f1=f2 in a neighborhood
of a point z, or for a segment of curve in R,
then f1=f2 in R.
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This theorem holds even if regions R1 and Rz

have a common boundary B and fi=f2 on it.
Then:

| fi(z) zeRUB
f(z)_{fz(z) 7eR,UB

Which is analyticin R,UR,UB .

A
) "

=Y




Example. Let’s consider function :

f,(z)= Y z" which s analytic for |z| < 1.
n=0

fi(z)= 1 for z| < 1and not defined for |z| > 1

1-z2

< (A" 2\" 3&l3( 2\ 2
f.(z)= — Z+—| =— —| z4+— converges for |z + —
2(2) 2(5) ( 3) 5%[5( 3)] ’ 3
ltssumis:

3 1 1
f Z P =
2(2) 5 3( 2) 1—7

1-—|z——

5 3

Since the power series f1 and f2 represent tha same function in the
Common region, they are analytic continuation of each other.

f1is continued analytically into larger circle.

S
<_
3

R1Z




Schwarz reflection principle

Since f(x,0)=g(x(0) on the part of real axis,
there exist an analytic function h(z) such that:

h(z)={f(z) zeR*
g(z) zeR

h(z')=9(z )=f (z)=h"(z)

f*(z)=f(2")




Dispersion relations
Consider ananalytic function having acut along + X axis for X, < X <0

asshowninafigure.

FroCauchy's integralformula:

1 J‘f(é‘)dé_ 1 f f(x+ia)dx+j‘ . X"I“g f(x—ie)dx_l_“‘

2miy ¢-1 2mi osie XFH1E—2 & L X—le—12 ¢,

f(z)=

Let's suppose that theintegrals around C; and Cp vanishas R - cwand p — 0.

Than:
1| f(x+is)-dx ¢ f(x—ig)-dx
f(z)_Zni{;‘; X—1Z +I X—1 }
1| Ff(x+ig)— f(x—ig)
f(z)—Zni{J; X—2 dx}

[ 0]

A\ 4

f(z)=%j Im i(f;’ig)dx

Dispersion
relations

Dispersion relation expresses the value of ananalytic function at

any point of the complex plane
intherms of anintegral of the imaginary part of the function

ontheupper edge of the cut.

+X



If f(z) isa function of physical interes, we may write DR
going to the limit z= X"+ 1I¢

[o0]

f(x+w)=§j

In1f(%+ﬂs)dx
X—X—ig

=1Pj|mf(xfka+gﬁﬂhnf06)
T X — X T

X0

Ref(x)=EJDI!njL§%x,
T X=X

where P stands for 'Principal value integral' (Hauptwertitegral).
We used avery useful simbolic equation:
1 1
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If PVI doesnotconverge, or f(X)does not fall tozero fast enough for
numerical calculation,one may use so called once subtractedDRin

whichisintroduced an extra factor of x'
indenominator.Once subtracted DRmay be obtained
using as afunction f(z)/(z-z,) instead of f(z):
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Formally, once subtracted DRmay be obtained simply by calculating f(X;)
using DRand subtract it fromDR for f(X):
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Once subtracted DR




