

Progress on the $\rm PYTHIA$ $\,8$ event generator

Torbjörn Sjöstrand

Department of Astronomy and Theoretical Physics Lund University, Lund, Sweden

PRISMA Colloquium and Seminar of the Graduate School Mainz, 23 January 2013

Introduction – 1

Modern event generators were born at DESY, for the <code>PETRA</code> $\rm{e^+e^-}$ collider! $(1978-86,13-46$ GeV)

- Combine perturbative picture of hard processes, involving electroweak and strong interactions, with nonperturbative picture of hadronization.
- Provide "complete" events, with parameters to be tuned to data, and used to study and understand different kinds of physics.

JETSET (PYTHIA predecessor): ∼1,000 lines of Fortran code in 1980

Introduction – 2

Events more messy at the LHC (even when simplified):

General-purpose event generators: PYTHIA, HERWIG, SHERPA PYTHIA size: ∼80,000 lines (Fortran in PYTHIA 6, C++ in PYTHIA 8)

- Structure of LHC events impossible to "solve" from first principles.
- Several competing mechanisms contribute, both perturbative and nonperturbative.
- Even if calculable somehow, need 1000-body expressions and phase space sampling.
- **Immense variability, with "typical events" and "rare corners".**

An event generator is intended to simulate various event kinds, with random numbers providing quantum mechanical variability.

It can be used to

- o predict event rates and topologies \Rightarrow estimate feasibility
- o simulate possible backgrounds \Rightarrow devise analysis strategies
- o study detector requirements \Rightarrow optimize design and trigger
- study detector imperfections \Rightarrow evaluate acceptance

PYTHIA 8 development overview

Ambition (relative to $PYTHIA$ 6)

- Meet experimental request for $C++$ code.
- Housecleaning \Rightarrow more homogeneous.
- More user-friendly (e.g. settings names).
- Better match to software frameworks (e.g. card files).
- More space for growth.
- Better interfaces to external standards.

Reality

- Work begun autumn 2004.
- 3 years at CERN \Rightarrow good progress.
- First release autumn 2007.
- Since then: slower progress, but gradually things get done.
- Usage is taking off, at long last.

Team members Jesper Christiansen Stephen Mrenna Stefan Prestel Peter Skands

Former members Stefan Ask Richard Corke

Contributors Robert Ciesielski Nishita Desai Philip Ilten Tomas Kasemets Mikhail Kirsanov

· · ·

Key differences between $PYTHIA$ 6.4 and 8.1

Old features definitely removed include, among others:

- independent fragmentation (always non-default option)
- mass-ordered showers (original ones)

Features omitted so far include, among others:

- ep, γ p and $\gamma\gamma$ beam configurations
- several processes, especially Technicolor, partly SUSY

New features, not found in 6.4, include:

 \star CKKW-L and MLM merging, support POWHEG, more coming

- \star fully interleaved p_⊥-ordered MPI + ISR + FSR evolution
- \star richer mix of underlying-event processes (γ , J/ ψ , DY, ...)

 \star allow rescattering and x-dependent proton size in MPI framework

- \star full hadron–hadron collision machinery for diffractive systems
- \star several new processes, within and beyond SM
- $\star \tau$ lepton polarization in production and decay
- \star updated decay data and LO PDF sets

? · · ·

PYTHIA intended to describe the complete structure of an event, but nobody can do everything – need to be open to the World.

- **Les Houches Event Files or runtime LHA interface**
- LHAPDF or other external PDF libraries
- SUSY LHA input
- External random number generator
- External beam momentum and vertex spread
- **•** Semi-internal matrix elements or resonance widths (MadGraph 5 can generate code for inclusion in $PYTHIA$)
- External parton showers (e.g. $VINCIA)$
- External decay of selected particles (EvtGen?)
- User hooks: step into generation process, e.g. to veto
- Particle/resonance gun (e.g. decay Higgs in isolation)
- HepMC output
- **•** Combine with RIVET analyses

PYTHIA physics progress in recent years

The Parton-Shower Approach

of emissions, with simple DGLAP splitting kernels

ISR $2 \rightarrow 2$ **FSR**

 $FSR = Final-State Radiation = timelike shower$ $Q_i^2 \sim m^2 > 0$ decreasing

 $ISR = Initial-State Radiation = spacelike shows$ $Q_i^2 \sim -m^2 > 0$ increasing

Showers are unitary: do not (explicitly) change cross sections; emission probabilities do not exceed unity — Sudakov factor.

Matrix Elements vs. Parton Showers $\mathcal{M}(\mathcal{M})$ and $\mathcal{M}(\mathcal{M})$ are parton such Showers vs. $\mathcal{M}(\mathcal{M})$

- ME : Matrix Elements ME : Matrix Elements
	- $+$ systematic expansion in $\alpha_{\rm s}$ ('*exact'*)
	- + powerful for multiparton Born level + powerful for multiparton Born level
	- + flexible phase space cuts + flexible phase space cuts
	- − loop calculations very tough − loop calculations very tough
	- − negative cross section in collinear regions − negative cross section in collinear regions ⇒ unpredictive jet/event structure ⇒ unpredictive jet/event structure
	- − *no easy match to hadronization* p²²
- PS : Parton Showers PS : Parton Showers
	- − approximate, to LL (or NLL) − approximate, to LL (or NLL)
	- − main topology not predetermined − main topology not predetermined ⇒ inefficient for exclusive states ⇒ inefficient for exclusive states
	- + process-generic ⇒ simple multiparton + process-generic ⇒ simple multiparton $\frac{1}{2}$ Sudakov form factors $\frac{1}{2}$ supplementary
	- $+$ Sudakov form factors/resummation
		- \Rightarrow sensible jet/event structure p_1^2
	- easy to match to hadronization

Recall complementary strengths:

- ME's good for well separated jets
- PS's good for structure inside jets
- Marriage desirable! But how?

Very active field of research; requires a lecture of its own

- Reweight first PS emission by ratio ME/PS (simple POWHEG)
- Combine several LO MEs, using showers for Sudakov weights
	- CKKW: analytic Sudakov not used any longer
	- CKKW-L: trial showers gives sophisticated Sudakovs
	- MLM: match of final partonic jets to original ones
- Match to NLO precision of basic process
	- MC@NLO: additive \Rightarrow LO normalization at high p_{\perp}
	- POWHEG: multiplicative \Rightarrow NLO normalization at high p_{\perp}
- Combine several orders, as many as possible at NLO
	- **MENLOPS**
	- \bullet UNLOPS (U = unitarized = preserve normalizations)

M atching/merging with $PyrHIA$

- Built-in NLO+PS for many resonance decays $(\gamma^*/\mathrm{Z}^0,\mathrm{W}^\pm,\mathrm{t},\mathrm{H}^0$, SUSY, \dots)
- Some few built-in $+1$ matching $(\gamma^*/\mathrm{Z}^0/\mathrm{W}^\pm + 1$ jet)
- Default max scale gives fairly good QCD jet rates, also for gauge boson pairs, top pairs (with damping), SUSY
- Accepts just about any valid Les Houches Event input (but matching at an ill–defined "scale")
- POWHEG interface extends on "scale" matching to showers
- no MC@NLO interface, but Frixione et al working on it
- MLM matching code for ALPGEN input recently introduced, coming for MadGraph5
- CKKW-L LO matching (tested for MadGraph5 input)
- UNLOPS NLO matching coming
- Vincia: alternative antenna shower package, with ME matching on the way

Power vs. wimpy showers -1

Increased role of ME's at expense of PS's, but also

- **o** desire for total increased precision
- \blacktriangleright PS's used for virtual corrections (Sudakovs)
- fast first estimate for new physics

Three main cases for starting scale of hard process (mainly ISR):

I. QCD jets: must avoid doublecounting, shower starting scale = p_{\perp} of hard 2 \rightarrow 2 process. Generally gives surprisingly good agreement, e.g. for $2 \rightarrow 3$: $s = 0.06$ $s = 0.2$ $s = 0.1$ $s = 0.2$ process.

Ⅱ. Production of colour singlets in final state: no destructive interference \Rightarrow showers full blast ("power shower")

Power vs. wimpy showers – 2

III. Production of coloured partons in final state: destructive interference between ISR and $\text{FSR} \Rightarrow$ dampening

Typically correct behaviour interpolates between "power" and
"wimpy" (stop at scale of hard process):
 $\frac{dP_{\rm ISR}}{dp_\perp^2} \propto \frac{1}{p_\perp^2} \frac{k^2M^2}{k^2M^2 + p_\perp^2}$ "wimpy" (stop at scale of hard process): ⊥

$$
\frac{\text{d} P_{\text{ISR}}}{\text{d} \rho_\perp^2} \propto \frac{1}{\rho_\perp^2} \frac{k^2 M^2}{k^2 M^2 + \rho_\perp^2}
$$

Multiparton interactions (MPI's)

Many parton-parton interactions per pp event: MPI.

Most have small p_{\perp} , ~ 2 GeV \Rightarrow not visible as separate jets, but contribute to event activity.

Solid evidence that MPIs play central role for event structure.

Problem:

$$
\sigma_{\rm int} = \iiint dx_1 dx_2 d\rho_\perp^2 f_1(x_1, \rho_\perp^2) f_2(x_2, \rho_\perp^2) \frac{d\hat{\sigma}}{d\rho_\perp^2} = \infty
$$

since $\int dx\, f(x, p^2_{\perp}) = \infty$ and ${\rm d}\hat{\sigma}/{\rm d}p^2_{\perp} \approx 1/p^4_{\perp} \to \infty$ for $p_{\perp} \to 0$. Requires empirical dampening at small p_{\perp} , owing to colour screening (proton finite size).

Many aspects beyond pure theory \Rightarrow model building.

Multiparton interactions modelling

Regularise cross section with $p_{\perp 0}$ as free parameter

$$
\frac{\mathrm{d}\hat{\sigma}}{\mathrm{d}p_{\perp}^2} \propto \frac{\alpha_{\mathsf{s}}^2(\rho_{\perp}^2)}{\rho_{\perp}^4} \rightarrow \frac{\alpha_{\mathsf{s}}^2(\rho_{\perp 0}^2 + \rho_{\perp}^2)}{(\rho_{\perp 0}^2 + \rho_{\perp}^2)^2}
$$

with energy dependence

$$
\rho_{\perp 0}(E_{\rm CM}) = \rho_{\perp 0}^{\rm ref} \times \left(\frac{E_{\rm CM}}{E_{\rm CM}^{\rm ref}}\right)^{\epsilon}
$$

Matter profile in impact-parameter space gives time-integrated overlap which determines level of activity: simple Gaussian or more peaked variants ISR and MPI compete for beam momentum \rightarrow PDF rescaling + flavour effects (valence, $q\bar{q}$ pair companions, ...) + correlated primordial k_{\perp} and colour in beam remnant

Many partons produced close in space–time

 \Rightarrow colour rearrangement; reduction of total string length

$$
\Rightarrow \text{steeper } \langle p_{\perp} \rangle (n_{\text{ch}})
$$

Interleaved evolution

- Transverse-momentum-ordered parton showers for ISR and FSR
- MPI also ordered in p_{\perp}
- \Rightarrow Allows interleaved evolution for ISR, FSR and MPI:

$$
\frac{\mathrm{d}\mathcal{P}}{\mathrm{d}\rho_{\perp}} = \left(\frac{\mathrm{d}\mathcal{P}_{\mathrm{MPI}}}{\mathrm{d}\rho_{\perp}} + \sum \frac{\mathrm{d}\mathcal{P}_{\mathrm{ISR}}}{\mathrm{d}\rho_{\perp}} + \sum \frac{\mathrm{d}\mathcal{P}_{\mathrm{FSR}}}{\mathrm{d}\rho_{\perp}}\right) \times \exp\left(-\int_{\rho_{\perp}}^{\rho_{\perp\mathrm{max}}} \left(\frac{\mathrm{d}\mathcal{P}_{\mathrm{MPI}}}{\mathrm{d}\rho_{\perp}'} + \sum \frac{\mathrm{d}\mathcal{P}_{\mathrm{ISR}}}{\mathrm{d}\rho_{\perp}'} + \sum \frac{\mathrm{d}\mathcal{P}_{\mathrm{FSR}}}{\mathrm{d}\rho_{\perp}'}\right) \mathrm{d}\rho_{\perp}'\right)
$$

Ordered in decreasing p_{\perp} using "Sudakov" trick. Corresponds to increasing "resolution": smaller p_{\perp} fill in details of basic picture set at larger p_{\perp} .

- Start from fixed hard interaction \Rightarrow underlying event
- No separate hard interaction \Rightarrow minbias events
- Possible to choose two hard interactions, e.g. $W-W^-$

Rescattering

Same order in α_S , \sim same propagators, but

- one PDF weight less \Rightarrow smaller σ
- one jet less \Rightarrow QCD radiation background 2 \rightarrow 3 larger than 2 \rightarrow 4
- \Rightarrow will be tough to find direct evidence.

Rescattering grows with number of "previous" scatterings:

Normally assume that PDFs factorize in longitudinal and transverse space:

 $f(x,r) = f(x) \rho(r)$

In contradiction with

- \bullet intuitive picture of partons spreading out by cascade to lower x
- Mueller's dipole cascade
- formally BFKL, Balitsky-JIMWLK, Colour Glass Condensate, . . .
- \bullet Froissart-Martin $\sigma_{\rm tot} \propto \ln^2 s$
- by Gribov theory related to $r_{\rm p} \propto \ln(1/x)$
- generalized parton distributions, . . .

For now address inelastic nondiffrative events with ansatz:

$$
\rho(r, x) \propto \frac{1}{a^3(x)} \exp\left(-\frac{r^2}{a^2(x)}\right)
$$
 with $a(x) = a_0 \left(1 + a_1 \ln \frac{1}{x}\right)$

 $a_1 \approx 0.15$ tuned to rise of σ_{ND} a_0 tuned to **value** of σ_{ND} , given PDF, p_{10}, \ldots Convolution of two incoming protons gives impact parameter shape

$$
\tilde{\mathcal{O}}(b; x_1, x_2) = \frac{1}{\pi} \frac{1}{a^2(x_1) + a^2(x_2)} \exp\left(-\frac{b^2}{a^2(x_1) + a^2(x_2)}\right)
$$

Consequence: collisions at large x will have to happen at small b , and hence further large-to-medium-x MPIs are enhanced, while low- x partons are so spread out that it plays less role.

Diffraction -1

Ingelman-Schlein: Pomeron as hadron with partonic content Ingelman-Schlein: Pomeron as hadron with partonic content Diffractive event = (Pomeron flux) \times (Pp collision)

1) σ_{SD} and σ_{DD} taken from existing parametrization or set by user.

2) $f_{\rm lP/P}({x_{\rm lP},t}) \Rightarrow$ diffractive mass spectrum, ρ_{\perp} of proton out.

3) Smooth transition from simple model at low masses to Pp with full pp machinery: multiple interactions, parton showers, etc.

4) Choice between 5 Pomeron PDFs.

5) Free parameter $\sigma_{\rm I\! Pp}$ needed to fix $\langle n_{\rm interactions}\rangle = \sigma_{\rm jet}/\sigma_{\rm I\! Pp}$.

$Diffraction - 2$

- Softer p_T spectrum in Pythia6 due to lack of high mass diffraction
- ▶ Pythia8 and Phojet agree quite well

Beate Heinemann, MB/UE Working Group (also Sparsh Navin)

Þ $\overline{10}$

The Lund String Model

In QCD, for large charge separation, field lines seem to be compressed to tubelike region(s) \Rightarrow string(s)

by self-interactions among soft gluons in the "vacuum".

Gives linear confinement with string tension: $F(r) \approx \text{const} = \kappa \approx 1 \text{ GeV} / \text{fm} \quad \Longleftrightarrow \quad V(r) \approx \kappa r$

String breaks into hadrons along its length, with roughly uniform probability in rapidity, by formation of new $q\bar{q}$ pairs that screen endpoint colours.

The Lund Gluon Picture

$Gluon = kink$ on string

Force ratio gluon/ quark $= 2$, cf. QCD $N_c/C_F = 9/4$, \rightarrow 2 for $N_c \rightarrow \infty$ No new parameters introduced for gluon jets!

Charged Multiplicity Distribution – 1

- We need to understand both average and spread.
- "Ankle": transition from one to ≥ 2 interactions?
- High multiplicity tail driven by abundant MPI rate.
- Broad spectrum of tunes even within given model.

Charged Multiplicity Distribution – 2

"Ankle" also present in ALICE and ATLAS data. Benchmark comparisons ALICE/ATLAS/CMS generally successful.

Charged Transverse Momentum Distribution

 $\langle p_{\perp} \rangle$ sensitive to colour correlations between MPIs!

Some in-house tunes: "handmade"

R. Corke & TS, JHEP 03 (2011) 032, JHEP 05 (2011) 009

RIVET: collection of experimental data, together with matching analysis routines. Can be applied to generator events for comparison with data.

PROFESSOR: parameter tuning in multidimensional parameter space.

- Generate large event samples at $\mathcal{O}(n^2)$ random points in (reasonable) parameter space. Slow!
- Analyze events and fill relevant histograms.
- For each bin of each histogram parametrize

$$
X_{MC} = A_0 + \sum_{i=1}^n B_i p_i \sum_{i=1}^n C_i p_i^2 + \sum_{i=1}^{n-1} \sum_{j=i+1}^n D_{ij} p_i p_j
$$

Do minimization of χ^2 to parametrized results. Fast!

Prepackaged tunes

Tune:pp selects prepackaged set of parameter changes.

Tune:ee similar but less extensive for FSR and hadronization.

MCnet review

MCnet Marie Curie network 2007 – 2010 worked on generators and produced review

"General-purpose event generators for LHC physics", A. Buckley et al. (MCnet), Phys. Rep. 504 (2011) 145,

which compares $PYTHIA$ 8.145 tune 4C, Herwig++, SHERPA:

Ratio to CMS

MCnet – second round

3-6 month fully funded studentships for current PhD students at one of the MCnet nodes. An excellent opportunity to really understand and improve the Monte Carlos you use!

Application rounds every 3 months.

MCnet funded 2013 – 2016 Projects:

- PYTHIA (incl. VINCIA)
- **•** Herwig
- Sherpa
- MadGraph
- Ariadne (incl. HEJ)
- **CEDAR (Rivet, Professor)**

MCPLOTS

Repository of comparisons between various tunes and data, mainly based on RIVET for data analysis, see http://mcplots.cern.ch/. Part of the LHC@home 2.0 platform for home computer participation.

BSM physics 1: R-parity violation

Encountered in R -parity violating SUSY decays $\tilde{\chi}^0_1 \rightarrow$ uds, or when 2 valence quarks kicked out of proton beam

What if coloured (SUSY) particle like \tilde{g} or \tilde{t}_1 is long-lived?

- \star Formation of R-hadrons \overline{q} q \overline{q} | $\overline{t}_1\overline{q}$ | "mesons" $\left[\begin{array}{c} \tilde{g} \bar{g} \end{array}\right]$ $\left[\begin{array}{c} \tilde{t}_1 \bar{q} \end{array}\right]$ "glueballs" "glueballs"
- \star Conversion between R-hadrons by "low-energy" interactions with matter: \overline{q} ud + p \rightarrow \overline{q} uud + π ⁺ irreversible
- \star Displaced vertices if finite lifetime, or else
- \star punch-through: $\sigma \approx \sigma_{\text{had}}$ but $\Delta E \!\lesssim\! 1\;\textsf{GeV} \ll E_{\textsf{kin},R}$
- A.C. Kraan, Eur. Phys. J. C37 (2004) 91;
- M. Fairbairn et al., Phys. Rep. 438 (2007) 1

CMS, arXiv:1101.1645

Partly event generation, partly detector simulation. Public add-on in PYTHIA 6, now integrated part of PYTHIA 8. Can also be applied to non-SUSY long-lived "hadrons".

BSM physics 3: Hidden Valley (Secluded Sector) – 1 BSM Physics 3: Hidden Valley (Secluded Sector)

What if new gauge groups at low energy scales, hidden by potential barrier or weak couplings? (M. Strassler & K. Zurek, . . .)

Complete framework implemented in PYTHIA:

- \star New gauge group either Abelian $U(1)$ or non-Abelian $SU(N)$
- \star 3 alternative production mechanisms
	- 1) massive Z': $\mathsf{q}\overline{\mathsf{q}} \to \mathsf{Z}' \to \mathsf{q}_v\overline{\mathsf{q}}_v$
	- 2) kinetic mixing: $q\overline{q} \rightarrow \gamma \rightarrow \gamma_v \rightarrow q_v \overline{q}_v$
	- 3) massive F_v charged under both SM and hidden group
- \star Interleaved shower in QCD, QED and HV sectors: add $q_v \rightarrow q_v \gamma_v$ (and F_v) or $q_v \rightarrow q_v q_v$, $q_v \rightarrow q_v q_v$, which gives recoil effects also in visible sector

L. Carloni & TS, JHEP 09 (2010) 105; L. Carloni, J. Rathsman & TS, JHEP 04 (2011) 091

BSM physics 3: Hidden Valley (Secluded Sector) – 2

- \star Hidden Valley particles may remain invisible, or ...
- \star Broken $U(1)$: γ_v acquire mass, radiated γ_v s decay back $\gamma_v \to \gamma \to f\bar{f}$ with BRs as photon (\Rightarrow lepton pairs!)
- $\star SU(N)$: hadronization in hidden sector, with full string fragmentation, permitting up to 8 different q_v flavours and 64 $q_v\overline{q}_v$ mesons, but for now assumed degenerate in mass, so only distinguish
	- off-diagonal, flavour-charged, stable & invisible
	- diagonal, can decay back $q_v\overline{q}_v \rightarrow f\overline{f}$

Even when tuned to same average activity, hope to separate $U(1)$ and $SU(N)$:

W/Z emission in showers: motivation -1

While showers work for $W/Z + 1$ jet they fail for $W/Z + \geq 2$ jets: ATLAS data Pythia8 default Pythia8 ME2PS Pythia8 ME3PS $p_{\perp}^\mathrm{jet} >$ 20 GeV 1 2 10 ¹ 10 ² 10 ³ Inclusive Jet Multiplicity *σ*(*W* + ≥ *N*_{jet} jets) [pb] 0 1 2 3 4 5 Ω 0.5 1 1.5 $N_{i_{\text{out}}}$ MC/data (CKKW-L merging by Stefan Prestel) Hughah Reidty Pythia8 default Pythia8 ME2PS Pythia8 ME3PS $p_{\perp}^\mathrm{jet} > 20 \ \mathrm{GeV}$ 10−² 10−¹ 1 Third Jet *p*⊥ d*σ*/d *p* ⊥ [pb/GeV] 20 40 60 80 100 120 0.4 0.6 α 1 1.2 1.4 1.6 1.8 *p*⊥ [GeV] MC/data ATLAS data Pythia8 default vthia8 ME₂PS Pythia8 ME3PS $p_{\perp}^\mathrm{jet} > 20 \ \mathrm{GeV}$ 0 1.4 50 100 150 200 250 Azimuthal Distance of Leading Jets d*σ*/d ∆ *φ* [pb] 0 0.5 1 1.5 2 2.5 3 0.6 0.8 1 1.2 ∆*φ*(First Jet, Second Jet) MC/data

W/Z emission in showers: motivation -2

Q: So what is unique about $W/Z + 2$ jets? A: First order in which core "hard process" cannot be chosen as W/Z production!

W/Z emission in showers: motivation -3

Leading electroweak corrections of type $\alpha_{\rm w}$ In $^2(Q^2/M_{\rm W}^2)$:

Bloch-Nordsieck violation: real/virtual non-cancellation W/Z in final state is another class of events \Rightarrow large negative correction to no-W/Z cross sections!

S. Moretti, M.R. Nolten and D.A. Ross, Nucl. Phys. B759 (2006) 50

 $\mathcal{S} = \frac{1}{2} \sum_{i=1}^{n} \frac{1}{2} \sum_{j=1}^{n} \frac{1}{2} \sum$

W/Z emission in showers: progress

Need to start from QCD 2 \rightarrow 2 and add shower emission of W/Z: \bullet FSR: final-state radiation $\mathrm{q} \to \mathrm{q}'\, \mathrm{W}^\pm$, $\mathrm{q} \to \mathrm{q}\, \mathrm{Z^0}.$

• ISR: partly already covered by W/Z production processes.

Project at a primitive stage; for now only e^+e^- annihilation. Formulated as dipole emission, interleaved with QCD emissions

For W emission interference between two dipole ends is replaced by interference between two flavour topologies:

Cloud $#1$: Bose-Einstein Effects

Bose-Einstein $r(N_{\rm ch}) \propto N_{\rm ch}^{1/3}$ cannot be accommodated in PYTHIA effective description that worked at LEP

PHENIX AuAu @ 200 AGeV

Multiple overlapping fragmenting strings \Rightarrow dense hadron gas!

Cloud #2: Flavour Composition

Need more p_{\perp} for K, p, Λ , ..., relative to π^{\pm} .

Cloud $#3$: The Ridge

Geometry of colliding protons (non-symmetric shapes)? Collective phenomena?

(subjectively, absolute or compared with $Hermig++$ and Sherpa)

- $+$ fair selection og built-in processes ready to go
- − no built-in ME generator (need e.g. MadGraph)
- − matching/merging/NLO usually not automatic
- \pm parton showers of comparable quality
- + most sophisticated & robust MPI framework
- $+$ models for diffractive events
- + most sophisticated & robust hadronization framework
- − no QED in hadronic decays (need e.g. Photos)
- $+$ interfaces & many options \Rightarrow flexible
- $+$ user-friendly, well documented, many examples
- $+$ generally comparing well with LHC data \dots
- − . . . but known discrepancies, e.g. flavour composition

Summary and outlook

- PYTHIA 6 is winding down
	- currently supported but not developed
	- not supported after long shutdown 2013-14
- PYTHIA 8 is the natural successor
	- \bullet is (sadly!) not yet quite up to speed in all respects
	- but for most physics clearly better than PYTHIA 6
- Advise/plea to experimentalists
	- gradually step up PYTHIA 8 usage to gain experience
	- if you want new features then be prepared to use PYTHIA 8
	- provide feedback, both what works and what does not
	- make relevant data available in RIVET
	- do your own tunes to data and tell outcome

News list:

http://www.hepforge.org/lists/listinfo/pythia8-announce

The work is never done!