Gauge/Gravity Duality: An introduction

Johanna Erdmenger

Max-Planck-Institut für Physik, München

Outline

I. Foundations

- 1. String theory
- Dualities between quantum field theories and gravity theories
 AdS/CFT correspondence
- 3. Originates from string theory

II. Applications

- 1. Theory of Strong Interactions (QCD)
- 2. Quark-gluon plasma and black holes
- 3. Superfluidity and superconductivity

Well-known fundamental theories:

Well-known fundamental theories:

Standard model of elementary particle physics:
 describes strong, weak and electromagnetic forces
 Local quantum field theory (gauge theory), particles point-like
 Confirmed experimentally up to a scale of about \$\mathcal{O}(100)\$ GeV
 Effective Theory (free parameters, for example quark masses)

Well-known fundamental theories:

Standard model of elementary particle physics: describes strong, weak and electromagnetic forces Local quantum field theory (gauge theory), particles point-like Confirmed experimentally up to a scale of about $\mathcal{O}(100)$ GeV Effective Theory (free parameters, for example quark masses)

Einstein's theory of general relativity (Theory of gravitation)
 Classical theory

Non-renormalizable

Quantum effects expected at $M_{Planck} \simeq 10^{19} GeV$

Search for a

Unified Theory of fundamental interactions

- Quantum theory of gravitation
- Description of all four interactions in a unified framework
- Reduction of the number of free parameters

Promising candidate: String theory

Quantum theory of gravitation and unification of all four interactions:

Locality is abandoned at very short distances

Natural cut-off: String length

$$l_s \sim \frac{1}{M_{Planck}}, \quad l_s = \sqrt{\frac{\hbar G}{c^3}} = 1.616 \times 10^{-35} m$$

Quantum theory of gravitation and unification of all four interactions:

Locality is abandoned at very short distances

Natural cut-off: String length

$$l_s \sim \frac{1}{M_{Planck}}, \quad l_s = \sqrt{\frac{\hbar G}{c^3}} = 1.616 \times 10^{-35} m$$

Direct experimental tests not possible today

Quantum theory of gravitation and unification of all four interactions:

Locality is abandoned at very short distances

Natural cut-off: String length

$$l_s \sim \frac{1}{M_{Planck}}, \quad l_s = \sqrt{\frac{\hbar G}{c^3}} = 1.616 \times 10^{-35} m$$

Direct experimental tests not possible today

Search for indirect experimental evidence

New applications of string theory

New:

String theory:

New framework for describing strongly coupled systems

New applications of string theory

New:

String theory:

New framework for describing strongly coupled systems

At arbitrary energies

New applications of string theory

New:

String theory:

New framework for describing strongly coupled systems

At arbitrary energies

New applications of string theoretical methods

- within elementary particle physics
- within condensed matter theory

Dualities between quantum field theories and gravitation

Map: Quantum field theory ⇔ Classical theory of Gravitation

Event at the RHIC accelerator

Black hole geometry

Dualities between quantum field theories and gravitation

Map: Quantum field theory ⇔ Classical theory of Gravitation

Event at the RHIC accelerator

Practical Significance:

Map: Strongly coupled quantum field theory

⇔ Weakly coupled classical theory of gravitation (Solvable)

AdS/CFT Correspondence: Foundations

(Maldacena 1997, AdS: Anti de Sitter space, CFT: conformal field theory)

- Follows from a low-energy limit of string theory
- Duality:

Quantum field theory at strong coupling

⇒ Theory of gravitation at weak coupling

Holography:

Quantum field theory in four dimensions

⇔ Gravitational theory in five dimensions

Anti-de Sitter Space

Space of constant negative curvature, has a boundary

$$ds^2 = e^{2r/L} dx_\mu dx^\mu + dr^2$$

Figure source: Institute of Physics, Copyright: C. Escher

Quantum field theory

Quantum field theory

in which the fields transform covariantly under conformal transformations

Quantum field theory

in which the fields transform covariantly under conformal transformations

Conformal coordinate transformations: preserve angles locally

Quantum field theory

in which the fields transform covariantly under conformal transformations

Conformal coordinate transformations: preserve angles locally

⇒ Correlation functions are determined up to a small number of parameters

Quantum field theory

in which the fields transform covariantly under conformal transformations

Conformal coordinate transformations: preserve angles locally

⇒ Correlation functions are determined up to a small number of parameters

Note: Confinement and conformal symmetry are incompatible!

String theory

Open strings: Gauge degrees of freedom of the Standard Model

Closed Strings: Gravitation

Two types of degrees of freedom: open and closed strings

Higher oscillation modes are excited

String theory

Quantization:

Supersymmetric string theory well-defined in 9+1 dimensions

(No tachyons, no anomalies)

Supersymmetry: Symmetry Bosons ⇔ Fermions

What is the significance of the additional dimensions?

- 1. Compactification
- 2. D-branes

D-Branes

D-branes are hypersurfaces embedded into 9+1 dimensional space

D3-Branes: (3+1)-dimensional hypersurfaces

Open Strings may end on these hypersurfaces ⇔ Dynamics

D-Branes

Low-energy limit (Strings point-like) ⇒

Open Strings \Leftrightarrow Dynamics of gauge fields on the brane

D-Branes

Low-energy limit (Strings point-like) ⇒

Open Strings \Leftrightarrow Dynamics of gauge fields on the brane

Second interpretation of the D-branes:

Solitonic solutions of ten-dimensional supergravity

Heavy objects which curve the space around them

String theory origin of the AdS/CFT correspondence

D3 branes in 10d

↓ Low energy limit

Supersymmetric SU(N) gauge theory in four dimensions $(N \to \infty)$

Supergravity on the space $AdS_5 \times S^5$

AdS/CFT correspondence

'Dictionary' Field theory operators ⇔ Classical fields in gravity theory

Symmetry properties coincide

Test: (e.g.) Calculation of correlation functions

Applications

- 1. Strong interactions Quarks and Gluons
- 2. Finite temperature: Quark Gluon Plasma
- 3. Superfluiditiy and Superconductivity

Strong Interactions: Quarks and Gluons

Theory of Strong Interactions: Quantum Chromodynamics (QCD)

Baryon (e.g. Proton)

Meson (e.g. Pion)

Asymptotic freedom and confinement:

Quarks and Gluons are strongly coupled at low energies

Quarks in the AdS/CFT correspondence

Add D7-Branes (Hypersurfaces)

	0	1	2	3	4	5	6	7	8	9
N D3	X	X	X	X						
1,2 D7	X	X	X	X	X	X	X	X		

Quarks: Low energy limit of open strings between D3- and D7-Branes

Meson masses from fluctuations of the hypersurface (D7-Brane):

Quarks in the AdS/CFT correspondence

Add D7-Branes (Hypersurfaces)

	0	1	2	3	4	5	6	7	8	9
N D3	X	X	X	X						
1,2 D7	X	X	X	X	X	X	X	X		

Quarks: Low energy limit of open strings between D3- and D7-Branes

Meson masses from fluctuations of the hypersurface (D7-Brane):

Confinement: $AdS_5 \times S^5$ -metric has to be deformed

Comparison to lattice gauge theory

Mass of ρ meson as function of π meson mass² (for $N \to \infty$)

J.E., Evans, Kirsch, Threlfall '07, review EPJA

Lattice: Lucini, Del Debbio, Patella, Pica '07

AdS/CFT result:

$$\frac{m_{\rho}(m_{\pi})}{m_{\rho}(0)} = 1 + 0.307 \left(\frac{m_{\pi}}{m_{\rho}(0)}\right)^{2}$$

Lattice result (from Bali, Bursa '08): slope 0.341 ± 0.023

2. Finite temperature and density

Prime example: Phase diagram of strongly interacting matter

Bild: CBM @ FAIR, GSI

2. : Finite Temperature and Chemical Potential

Quark-gluon plasma:

Strongly coupled state of matter above deconfinement temperature T_d

2. : Finite Temperature and Chemical Potential

Quark-gluon plasma:

Strongly coupled state of matter above deconfinement temperature T_d

AdS/CFT dual of field theory at finite temperature: AdS black hole

Hawking temperature ⇔ temperature in the dual quantum field theory

Universal result:

Universal result:

Ratio of shear viscosity and entropy

$$\frac{\eta}{s} = \frac{\hbar}{k_B} \frac{1}{4\pi}$$

Universal result:

Ratio of shear viscosity and entropy

$$\frac{\eta}{s} = \frac{\hbar}{k_B} \frac{1}{4\pi}$$

Calculated using AdS/CFT at finite temperature

Policastro, Son, Starinets 2001

Universal result:

Ratio of shear viscosity and entropy

$$\frac{\eta}{s} = \frac{\hbar}{k_B} \frac{1}{4\pi}$$

Calculated using AdS/CFT at finite temperature

Policastro, Son, Starinets 2001

Lower bound: smallest possible value

2. Quarks and mesons at finite temperature

Babington, J.E., Evans, Guralnik, Kirsch 2004; Mateos, Myers, Thomson 2006

2. Quarks and mesons at finite temperature

Babington, J.E., Evans, Guralnik, Kirsch 2004; Mateos, Myers, Thomson 2006

Prediction:

Mesons survive deconfinement if quark mass m_q sufficiently large 1st order fundamental phase transition at $T=T_f$ where mesons dissociate $T_f\sim 0.12 M_{\rm meson\ at\ T=0}$

Easy to introduce: VEV for time component of gauge field

 ρ vector meson spectral function in dense hadronic medium

AdS/CFT result (J.E., Kaminski, Kerner, Rust 2008)

Spectral function at finite baryon density

ρ vector meson spectral function in dense hadronic medium

AdS/CFT result (J.E., Kaminski, Kerner, Rust 2008)

Field theory (Rapp, Wambach 2000)

Chemical Potential and Finite Density for Isospin (SU(2)) u- and d-Quarks

Phase diagram

Instability!

New solution to the equations of motion with lower free energy

New solution to the equations of motion with lower free energy

The new solution contains a condensate $\langle \bar{\psi}_u \gamma_3 \psi_d + \bar{\psi}_d \gamma_3 \psi_u + bosons \rangle$

New solution to the equations of motion with lower free energy

The new solution contains a condensate $\langle \bar{\psi}_u \gamma_3 \psi_d + \bar{\psi}_d \gamma_3 \psi_u + bosons \rangle$

 ρ meson condensate (p-wave, triplet pairing)

Ammon, J.E., Kaminski, Kerner 2008

The new ground state is a superfluid.

Frequency-dependent conductivity from spectral function

$$\mathfrak{w} = \omega/(2\pi T)$$

Prediction: Frictionless motion of mesons through the plasma

Quantum Phase Transition

Two chemical potentials: Isospin and Baryon Chemical Potential

Figure by Patrick Kerner

Example for Quantum Phase Transition

Quantum Phase Transition

Phase diagrams

Quantum phase transition

Superconductor

Fermionic Excitations in p-wave Superconductors

Ammon, J.E., Kaminski, O'Bannon 2010

B-field induced rho meson condensation

Field theory calculation

(Chernodub)

Gauge/gravity calculation

(Bu, J.E., Shock, Strydom)

Universal result from gauge/gravity duality for hydrodynamics:

$$\frac{\eta}{s} = \frac{\hbar}{k_B} \frac{1}{4\pi}$$

Universal result from gauge/gravity duality for hydrodynamics:

$$\frac{\eta}{s} = \frac{\hbar}{k_B} \frac{1}{4\pi}$$

Search for a similar relation in condensed matter physics

Universal result from gauge/gravity duality for hydrodynamics:

$$\frac{\eta}{s} = \frac{\hbar}{k_B} \frac{1}{4\pi}$$

Search for a similar relation in condensed matter physics

Candidate:

Homes' Law for superconductors:

$$n_s(T=0) = C\sigma(T_c)T_c$$

 n_s : Superfluid density; σ : Conductivity

Universal result from gauge/gravity duality for hydrodynamics:

$$\frac{\eta}{s} = \frac{\hbar}{k_B} \frac{1}{4\pi}$$

Search for a similar relation in condensed matter physics

Candidate:

Homes' Law for superconductors:

$$n_s(T=0) = C\sigma(T_c)T_c$$

 n_s : Superfluid density; σ : Conductivity

Found experimentally to great accuracy

Outlook: Homes' Law and Universality

Relation between η/s and Homes' Law:

Outlook: Homes' Law and Universality

Relation between η/s and Homes' Law:

Shortest possible dissipation time in strongly coupled systems:

Planckian time: $au = \frac{\hbar}{k_B T_c}$

Outlook: Homes' Law and Universality

Relation between η/s and Homes' Law:

Shortest possible dissipation time in strongly coupled systems:

Planckian time: $au = \frac{\hbar}{k_B T_c}$

Work in progress: Obtain this relation within gauge/gravity duality

Generalized AdS/CFT correspondence: Gauge/Gravity Duality

New relation between fundamental and applied aspects of theoretical physics

Generalized AdS/CFT correspondence: Gauge/Gravity Duality

New relation between fundamental and applied aspects of theoretical physics

Identification of Universal Behaviour

Generalized AdS/CFT correspondence: Gauge/Gravity Duality

- New relation between fundamental and applied aspects of theoretical physics
- Identification of Universal Behaviour
- Predictions for mesons in the quark-gluon plasma

Generalized AdS/CFT correspondence: Gauge/Gravity Duality

- New relation between fundamental and applied aspects of theoretical physics
- Identification of Universal Behaviour
- Predictions for mesons in the quark-gluon plasma
- Quantum phase transitions

Generalized AdS/CFT correspondence: Gauge/Gravity Duality

- New relation between fundamental and applied aspects of theoretical physics
- Identification of Universal Behaviour
- Predictions for mesons in the quark-gluon plasma
- Quantum phase transitions
- Comparison and combination with other approaches
- New relations between different areas of physics