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1. Multiple polylogarithms in several variables

Motivation:
Iterated integrals are crucial for the computation of Feynman integrals

One frequently computes with

® classical polylogarithms, e.g.

Liz(z):—/0 dX—/In(l—x / /

® harmonic polylogarithms, e.g.
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General definition for iterated integrals

Let
® k be a field (either R or C),
® M a smooth manifold over k,
® ~: [0, 1] - M a smooth path on M,
® (1, ..., wy smooth differential 1-forms on M,
® ~*(w;) = f;(t)dt the pull-back of w; to [0, 1]
Def.: The iterated integral of wy, ..., w, along ~ is

/w,,...wl = fo(tn)dtn...f1(t1)dts.
¥ 0<t;<...<tp<1

We use the term iterated integral for k-linear combinations of such integrals.



We obtain a different classes of functions by choosing different finite sets of 1-forms Q

dt
-1

1

_ Jdt _dt — dt
° O = Tvﬁ}vw():?’wl

o classical polylogarithms:
dtn, dtr zdt

Lln(z):/ wp...wp w1 :/ —
vy S~ 0<t;<...<t,<1 ln tr 1 —2zty

n—1times

e multiple polylogarithms in one variable:

Linl, .4.,n,(z) = (—1)' f"/ wp...wWo W1... wWo...wp Wi

n,—1 n—1

where v a smooth path in C\{0, 1} with end-point z



Hyp _ [ dty _dty _trdty (TI7, &)du | . .

e O 21

n { 0 BTt TP, &1 [ hyperlogarithms
(Poincare, Kummer 1840, Lappo-Danilevsky 1953)

special cases:
dty dty dty

® forn=2, tp = —1 this is B R nil

} : harmonic polylogarithms
(Remiddi, Vermaseren 1999)
_ __1 _ _z et dty _dty dty dty .
e forn=3,tr =—_, t3 = ;% thisis { ) T iz a1/
two-dimensional harmonic polylogarithms (Gehrmann, Remiddi 'o1)

Other classes of iterated integrals used in physics: cyclotomic harmonic
polylogarithms (Ablinger, Bliimlein, Schneider '11), multiple polylogarithms (Goncharov '01)

We want to construct a class closely related to Goncharov's multiple polylogarithms

with particularly good properties.



For any positive integer n we consider the set

o=t @ (esicstr)

S eens , where 1 <a<b<n
t tn [la<i<pti—
Examples:
_ Jdu dty . . .
Q= = t1—1} (see multiple polylogs in one variable)
Q, — dty dty _dty dty tydiy+tadty
27\ ) -1’ -1’ fifp—1
Note:

® They involve all dty, dt,, ..., dtp.

® They are of the type # with f =T[; t; — 1.



From this Q, we want to construct iterated integrals which are homotopy invariant.

Def.: Smooth paths 71, 72 on M are homotopic if their end-points coincide
and if y; can be continuously transformed into ~z.

Def.: An iterated integral is called homotopy invariant if it satisfies

/ Wnp...W1 :/ Wnp...W1
1 72

for homotopic ~1, 72

By such integrals we obtain function of variables given only by the end-points of
paths.



When is an iterated integral homotopy invariant?

Consider tensor products w; ® ... ® wm

= [wi]...Jwm] over Q.
Define an operator D by

m m—1
D ([wtfwm]) = St for1 /el |oowm] + 3 [t ooy 105 A g o -
i=1

i=1

Def.: A Q—linear combination of tensor products

m
€= cy, . ilwyldwil, ¢y, €Q

1=0iy, ..., 0

is called integrable word if

D(¢) = 0.



Consider the integration map

S bl 30 S o e
Yy

1=0 iy, ..., J 1=0iy, ..., 0

Theorem (Chen '77): Under certain conditions on Q this map is an isomorphism from
integrable words to homotopy invariant iterated integrals.

Construction of our class of homotopy invariant functions:

® Construct the integrable words of 1-forms in Q,. (Using the 'symbol map’.)

® By the integration map obtain the set of multiple polylogarithms in several
variables B(Q2,).



Properties of B(£2,) (Brown '05):

® They are well-defined functions of n variables, corresponding to end-points of

paths.

® On these functions, functional relations turn into algebraic identities.

® Via the 'symbol map’ we have a decomposition and an explicit basis.

® 3(Qn) is closed under taking primitives.

® Let Z be the QQ-vector space of multiple zeta values. The limits at 0 and 1 of
functions in B(2,) are Z-linear combinations of elements in B(Q,-1).



Consequence:

Let F, be the vector space of rational functions with denominators in
{tl, oos oy Tlacicp ti — 1}, 1<a<b<n.

Consider integrals of the type

1
/ dtn S £8; with € Fa, 6 € B().
0 .
J

We can compute such integrals. The results are Z-linear combinations of elements in
B(Qp—1), multiplied by elements in F,_1.

Concept: Map Feynman integrals to integrals of this type and evaluate them.

When is this possible?



2. Linear reducibility of Symanzik polynomials

Feynman integrals:

(v —LD/2) N > uy(LHob/2
Ig(e, Ag) = —— 12 dxixi —c
G(€, Ag) T 1) g0 <H > ( 21 (Fe (Ag))~LD/2

where v = Z,N:1 vj.

Symanzik polynomials:

UG) = > II x

spanning trees T of G edges ¢ T

2
Fo(6) = - > [I 2 q")’
spanning 2-forests (Ty, T2) \edges €(T1, T2) edges ¢(T1, T2)
N
F(G) = Fo(G)+U(G)> xim

i=1



Example 1: Vacuum graphs with v = 2L and D =4 :
N L N 1
de;xf"'_ > ) <1 — Zx;) —
/XiZO <,'1 ' i=1 ug
Example 2: Sunrise graph with v =L+1and D =2:

N v;—1 N 1
/x,-zo (H % ) ’ (1 - ;X') Fe (Ag)

i=1



Assume a finite integral whose integrand is given by one or both of the Symanzik
polynomials.

Try to integrate out the Feynman parameters iteratively.

® After integration over x; consider the set S; of polynomials in the denominator

and in arguments of multiple polylogs.
Check that all polynomials in S; are linear in a next Feynman parameter x;,;.
® Map the integral over x;;1 to an integral over t, of the form
1
/ dta S 6,3 with ; € Fa, 8; € B(Qn)
0 -
J

and integrate over tp.

The linear reduction algorithm gives an upper bound for the S;.



Linear reduction algorithm (Brown '08)
Input:
® 3 set of polynomials S,

® a sequence of Feynman parameters Xy, , Xrp, -..) Xr,

Output: a sequence of sets of polynomials S3, Sz, ..., Sn

Sk contains the polynomials which we expect in the integrand after integrating out the
first k parameters.

If all polynomials in Sy, . ] are linear in Xy the next integration can be done.

T

Def.: A set S is linearly reducible if there is an ordering (xr,, Xra, ..., Xr,) such that
for all 1 < k < n every polynomial in S, .| nl is linear in Xrpyq -

If this is true for {Ug, Fg} we say that the Feynman graph G is linearly reducible.



Consider the deletion and contraction of edges:

G\e: graph obtained from deleting edge e in G
G/ /e : graph obtained from contracting edge e in G

Deletion and contraction of different edges commute. = consider G\D//C where
C, D are disjoint sets of edges
Any such graph is called minor of G.

Def.: A set G of graphs is called minor-closed if for each G € G all minors belong to G
as well.



Let H be a finite set of graphs.
Define Gy to be the set of graphs whose minors do not belong to H.
Then the graphs in # are called forbidden minors of G3;. The set Gy is minor-closed.

Theorem (Robertson and Seymour): Any minor-closed set of graphs can be defined by
a finite set of forbidden minors.

Example:
Let G be the set of all planar graphs. This set is minor closed.
It can be defined as the set of all graphs which have neither K5 nor K3 3 as a minor.



Theorem (Brown '09, CB and Liiders '13): The set of linearly reducible Feynman
graphs is minor-closed.

We should search for the forbidden minors.

A first case study (with M. Liiders):
® Let A be the set of massless Feynman graphs with four on-shell legs. (On-shell
condition: p? =0, i =1, ..., 4)
® At two loops we find all graphs to be linearly reducible.
® At three loops we find first forbidden minors.
® Four loops are running on our computers and confirm the forbidden three-loop

minors so far.

Fazit: A classification w.r.t. linearly reducibility is possible by forbidden minors.
It gives a hint on the more difficult problem of which graphs evaluate to multiple
polylogarithms and which don’t.



3. The two-loop sunrise graph with arbitrary masses

my
m3

In D = 2 dimensions we obtain the finite Feynman integral
w
Sp=2(t) = / -
o -FG
with

w = x1dxa A dx3 + xodx3 A dx1 + x3dx1 A dxo

Fc (l‘7 m%, mg, mg) = —X1X2X3t+(X1X2—|—X2X3—|—X1X3)(X1m%+X2m§+X3m§), t = p?,

a:{[xl:xz:X3]€IP’2|x,-20,i:1,2,3}

As Fg is not linear in any x;, the graph is not linearly reducible.



(Incomplete) history of sunrises:
Equal mass case:
® Broadhurst, Fleischer, Tarasov (1993): result with hypergeometric functions

® Groote, Pivovarov (2000): Cutkosky rules = imaginary part expressed by elliptic
integrals

® |aporta, Remiddi (2004): solving a second-order differential equation = result
by integrals over elliptic integrals

Arbitrary mass case:

® Berends, Buza, Béhm, Scharf (1994): result with Lauricella functions

® Caffo, Czyz, Laporta, Remiddi (1998): system of four first-order differential
equations (and numerical solutions)

® Groote, Korner, Pivovarov (2005): integral representations involving Bessel
functions

® Miiller-Stach, Weinzierl, Zayadeh (2012): one second-order differential equation

Our goal: Solve the new differential equation (as Laporta and Remiddi did for equal
masses) and obtain a result involving elliptic integrals



A result for D dimensions is known from Berends, Buza, B6hm and Scharf (1994):

-1
+r(1 -2y (Fc (1, 2-2,2 0 0, mi mg m3 (“’f"’g)

D. D D
+Fc<1,2—5,5,2—5

2 2 2 2 2 2
_b.,_D D D.mMm m m; mpm3
+FC(172 212 2702 2 g Tt t)( 2

with the Lauricella function

(21)jy iy +i3 (32)jy tin iy X1 502 3
Fe(ar, a2; by, ba baixa, e xs) = 5500 S50 X0 — (B (balyy sl i)
and the Pochhammer symbol (a), = %




Using Euler-Zagier sums Zy(n) =307, Jl., Zya(n) =327, Il.Zl(j — 1) we can expand
the result in D = 2 and obtain:

1§00 0o oo 123! \2 [ mi n m3 & m3 s
Sp=2(t) = =1 270 20 2y 0 (j1!j2!j3!) T T 2

(12211 (j123) + 621 (j123) Z1 (j123) — 8Z1(j123) (Z1(j1) + Z1(J2) + Z1(j3))

4(Z1(1)Z1(2) + Z1(2)Z1(j3) + Z1(j3) Z1(Jn)) +
2(221(j123) — Zu(j2) — Za(ja)) In (—"’—) +2(2Z1G123) - Z1(3) — Za(jn)) In (—”—)

+2(22Z1(j123) — Z1(j1) — Z1(j2)) In (_mT§>

win (=) (<o) i (-2 ) o (22 o (-2 Yo (1) )

We obtain a five-fold nested sum.
Can we express the integral by iterated integrals instead?



Start from the second order differential equation:

2
(mm%;+mm%+m00ﬂﬂ=mm

Po, P1, P2, p3 are polynomials in t (of degrees 7, 6, 5, 4) and in m3, m3, m3.

Ansatz for the solution:

p3(t1)

L oo ()W () (=1 (t)2(t1) + Y2(t)Y1(t1))

ﬂwzqmm+QWM+A%t

with the solutions of the homogeneous equation 1, ¥2, constants Cy, Ca,

Wronski determinant W (t) = 1 (t) S1ba(t) — ¥2(t) L (t)



We will use

® complete elliptic integral of the first kind:

1 dx
K(k) = /o VA=) = k2x2)

® complete elliptic integral of the second kind:

1 1 — k2x2
E(k :/ ————dx
(k) i

® functions k(t), k’(t) such that k(t)% + k’(t)> =1



Introduce the notation

x1 = (my —m)2, x2 = (m3 — V)%, x3 = (m3 +Vt)?, x4 = (my + my)?

Consider the auxiliary elliptic curve given by the equation

y? = (x = x1)(x = x2)(x — x3)(x — xa).

By the associated holomorphic 1-form dx/y one obtains the period integrals

wl(t):z/x’ﬂ: 2K (K1),

> Y &(t)
val) =2 [ = Bk (o)
with £(t) = /(X3 — x1)(xs — x2),

k() = /B (0 = [ ke + K (7 =1

11(t) and 12 (t) solve the homogeneous differential equation for S(t).



Furthermore, from integrating over ";/ﬁ we obtain

#1060 = ¢y (KKO) ~ E ()
ba(t) = —E (K'(2)
&(t)
The period matrix of the elliptic curve is
( Pi(t)  a(t) )
#1(t)  ¢2(t)

and we have the Legendre relation

p1(t)pa(t) — a(t)da(t) = %

These are appropriate functions to express the full solution.



Full solution:

3 ‘ _
s@=1 (Z 012(a,-)> w0 - [ (i) = PR () - ()

T 3(x2 — x1)(xa — x3)

where

ni(t1) = Ya(t)a(tr) — 1 (t)a(ts)

n2(t1) = pa(t)p(tr) — Pa(t)g2(t1)

Clausen function: Clp(x) = 4; (Liz(e*) — Li(e=*))

«; = 2arctan (‘é—‘z) , A, §; : polynomials in my, ma, m3 of degrees 4 and 2 resp.

b; = d;(my, mz2, m3)In(m?) + d;(m2, m3, m1)In(m3) + d;(m3, my, mz)In(m3),
di(my1, mp, m3) = 2m§ — m% — m%,

o d 3 2 2 2 2
do(my, mz2, m3) = 2mi — m3 — m3 — mim3 — mj

2 2
m3 + 2m5m3



Conclusions:

® Multiple polylogarithms in several variables are homotopy invariant iterated
integrals with particularly good properties. We want to use them to iteratively

integrate out Feynman parameters.

® To decide whether the approach can succeed there is a criterion of linear
reducibility on the graphs. The class of linearly reducible graphs is minor-closed.

This allows for a convenient classification by forbidden minors.

® \We obtained a new result for the sunrise integral with arbitrary masses. The
result contains integrals over elliptic integrals and can be built up from the
period integrals of an (auxiliary) elliptic curve. An expression in terms of iterated
integrals would probably require further extensions of polylogarithms.



A well known functional equation is the five-term-relation:

—Lip (11 - ) —Lip (::’_{) +Lia (xy)—Liz (x)—Lia (y) = % In2(1—x)+% In2(1—y)

x y

Writing each function as iterated integral on the total space (using ), the relation
becomes obvious:

. 1—y dx dx dy | xdy + ydx dx dy dx dx dx
Lip (1% )= [T+ 5 - e R R
x X 1-x 11—y 1—xy 1—-x1-—y X 1—-x1—x

1-— d d d d d d d d d d
Lip X = [l+ 4 X IX_)/+_)/X:|+|: x ‘ Y i|_|:7y+7y‘ 4 :|
y 1—-y 1—x 1-—xy 1—-x1-—y y 1—y 1—y

. dx  dy xdy + ydx . dx  dx . dy, d
i () = [ 5+ 2P w0 = [ 2% ] ) = [ 27

y l1—y



® |f the polynomials S = {f1, ..., fn} are linear in a Feynman parameter x,,
consider:
of;

fi = gixn + hi, gi = ——, hi = filxry—o

rn
[ ] 5(,1) = irreducible factors of {g,'}lg,'g,,, {h;}lg,'g,,, {h,'gj — gihj}1§i<j§n
® iterate for a sequence (Xry, Xra; s Xrn )= S(ry)s S(ry,r2)s > S(re, ..., 1n)
® take intersections:

Sl = S(ra,r2) N S(ra, )
Slrasrasen] = D1<i<kSlry, by o rgd(r)r K>3
Xryy Xray ooy Xrp = S(r1)7 S[rl,rz]v ey S[rl.,...,r,,]
Def.: A set S is linearly reducible if there is an ordering (Xr,, Xry, ..., Xr,) such that

for all 1 < k < n every polynomial in Sy, .. nl is linear in xy, .

If this is true for {Ug, Fg} we say that the Feynman graph G is linearly reducible.






