NLO Predictions for New Physics in MadGOLEM

arXiv: hep/ph 1108.1250;1203.6358; 1211.0286

Universität Mainz 05.02.2013

Dorival Gonçalves

in collaboration with D. Lopez-Val, T. Plehn (Heildelberg U.) K. Mawatari (Vrije U. Brussel) & I. Wigmore (U. Edinburgh)

ITP - Universität Heidelberg

We present some non trivial fully automized NLO QCD calculations for new physics:

 $pp \to \tilde{q}\tilde{\chi}$: Source of monojet $+ \not\!\!\!E_T$ signatures [Phys. Rev. D 84, 075005 (2011)]

 $pp \rightarrow GG^*$: Sgluon pair production [Phys. Rev. D 85, 114024 (2012)]

 $pp \rightarrow \tilde{q}\tilde{q}, \, \tilde{q}\tilde{q}^*, \, \tilde{q}\tilde{g}, \, \tilde{g}\tilde{g}$: Squark and gluino pair production [Phys. Rev. D 87, 014002 (2013)]

Structure of the NLO corrections:

- Scale dependence
- (MSSM) parameter space survey
- Comparison with multi-jet merging

Impact of the usual simplifying assumptions, e.g. squark mass degeneracy

How to get finite individual contributions from MC methods? Catani-Seymour subtraction method:

 $\delta\sigma^{NLO} = \int_{n+1} \left(d\sigma^{Real}_{\varepsilon=0} - d\sigma^{A}_{\varepsilon=0} \right) + \int_{n} \left(d\sigma^{Collinear} + d\sigma^{Virtual} + \int_{1} d\sigma^{A} \right)_{\varepsilon=0}$

$$\sigma^{NLO} = \int_{n} d\sigma^{LO} + \int_{n+1} \left(d\sigma^{Real}_{\varepsilon=0} - d\sigma^{A}_{\varepsilon=0} - d\sigma^{OS}_{\varepsilon=0} \right) + \int_{n} \left(d\sigma^{Virtual} + \int_{1} d\sigma^{A} \right)_{\varepsilon=0}$$

Squark–Neutralino Production at NLO

Flavor-locked & semi-weak process sensitive to $q\tilde{q}\tilde{\chi}_1$ coupling: $\sigma^{LO} \sim \mathcal{O}(\alpha_{EW}\alpha_s)$

Semi-weak process, but favored by $m_{ ilde{\chi}^0_1} \ll m_{ ilde{q}},\ m_{ ilde{g}}$

Couplings size $q \tilde{q} \tilde{\chi}_1$ correlated with SUSY breaking - LSP (bino or wino-like)

Analysis @LO [Allanach, Grab, Haber arXiv:1010.4261] Process not yet studied @NLO!

First application of MadGOLEM [Phys. Rev. D 84, 075005 (2011)]

Real emission diagrams $pp \rightarrow \tilde{q}\tilde{\chi}_1 j$: quark or gluon emission

Real emission diagrams $pp \rightarrow \tilde{q}\tilde{\chi}_1 j$: quark or gluon emission

Real emission diagrams $pp \rightarrow \tilde{q}\tilde{\chi}_1 j$: quark or gluon emission

On-Shell Subtraction Method to avoid double counting instances involved in the production and decay of on shell heavy states

On-shell subtraction method: differentiation between off & on-shell production to avoid double counting [Beenakker, Hopker, Spira, Zerwas '97] (Prospino scheme)

MadGOLEM: first full automation in a process and model independent way

Virtual QCD and SUSY-QCD corrections:

a) self energy corrections; b) vertex corrections; c) box diagrams; d) UV counter terms

Renormalization scheme:

 \circ α_s in the \overline{MS} scheme, massive particles decoupled [Beenakker et.al. '97]

OS renorm. for massive particles

Virtual QCD and SUSY-QCD corrections:

a) self energy corrections; b) vertex corrections; c) box diagrams; d) UV counter terms

Renormalization scheme:

 \circ α_{s} in the \overline{MS} scheme, massive particles decoupled [Beenakker et.al. '97]

OS renorm. for massive particles

Virtual QCD and SUSY-QCD corrections:

a) self energy corrections; b) vertex corrections; c) box diagrams; d) UV counter terms

Renormalization scheme:

 \circ α_{s} in the \overline{MS} scheme, massive particles decoupled [Beenakker et.al. '97]

OS renorm. for massive particles

Virtual QCD and SUSY-QCD corrections:

a) self energy corrections; b) vertex corrections; c) box diagrams; d) UV counter terms

Renormalization scheme:

 \circ α_{s} in the \overline{MS} scheme, massive particles decoupled [Beenakker et.al. '97]

OS renorm. for massive particles

Virtual QCD and SUSY-QCD corrections:

a) self energy corrections; b) vertex corrections; c) box diagrams; d) UV counter terms

Renormalization scheme:

 \circ α_{s} in the \overline{MS} scheme, massive particles decoupled [Beenakker et.al. '97]

OS renorm. for massive particles

Scale Dependence

Stabilization of the scale dependence on the unphysical μ_R & μ_F

Solution Theory uncertainty largely reduced: $\frac{\delta \sigma^{NLO}}{\sigma^{NLO}} \leq 20\%$, down from up to $\frac{\delta \sigma^{LO}}{\sigma^{LO}} \leq 70\%$

NLO corrections

SQCD effects have a subleading contribution supressed by $\frac{1}{M_{SUSY}}$

Dominance by genuine QCD effects

NLO corrections

SQCD effects have a subleading contribution supressed by $\frac{1}{M_{SUSY}}$

Dominance by genuine QCD effects

 $u\bar{u}g$ vertex correction basically independent on $m_{\tilde{u}}$

Comparison with Multi-jet Merging

Sgluon pair production at NLO

Scalar gluons (sgluons) are color octet scalars without electroweak charges

Appear in various extensions to SM as composite or fundamental degrees of freedom:

Extra Dimensions: color octet scalars emerge as low-lying KK modes of the bulk gluon field Burdman, Dobrescu, Ponton Phys. Rev. D 74, 075008 (2006)

SUSY: sgluons emerge as scalar partners of a Dirac gluino Plehn, Tait J. Phys. G 36, 075001 (2009) Schumann, Renaud, Zerwas JHEP 1109 (2011) 074

At the LHC sgluon pairs will be copiously produced by their coupling to gluons

The most generic pheno signature is $pp \rightarrow GG^* \rightarrow 4jets$

Enormous background - exceeds the signal by orders of magnitude. So it can be relatively light

Status of the current searches

NLO calculation generated by MadGolem

Sgluons with masses 150-287 GeV are excluded at 95% C.L. by ATLAS 2011 data

Real emission corrections:

Sgluon dipoles:

Scale Dependence

Stabilization of the scale dependence on the unphysical μ_R & μ_F

 $\Delta \sigma^{\rm NLO} / \sigma^{\rm NLO} \sim \mathcal{O}(30\%)$, down from up to $\Delta \sigma^{\rm LO} / \sigma^{\rm LO} \sim \mathcal{O}(80\%)$

• Unlike Drell-Yan-type channels there is μ_R dependence at LO: $\sigma^{LO} \sim \alpha_s^2$ The bulk of the scale dependence comes from μ_R

NLO corrections

NLO corrections increase for increasing m_G

Dominance of $gg \to GG^*$

$$\rightarrow$$
 color charge

$$\Rightarrow \text{ threshold effects: } \begin{cases} \sigma_{gg} \sim \beta, & \text{s-wave component of } \sigma_{gg} \\ \sigma_{q\bar{q}} \sim \beta^3, & \text{p-wave component of } \sigma_{q\bar{q}}, & \beta = \sqrt{1 - 4m_G^2/s} \end{cases}$$

NLO distributions for the heavy final states in good agreement with multi-jet merged calculation via MLM matching with MadGraph

Squark and gluino pair production at NLO

 $pp \rightarrow \tilde{q}\tilde{q}, \, \tilde{q}\tilde{q}^*, \, \tilde{q}\tilde{g}, \, \tilde{g}\tilde{g}$: Main discovery channels for SUSY at the LHC

MadGOLEM presents significant improvements:

Fully automized

Can single out specific elements of the NLO QCD corrections e.g.

different partonic sub-channels or different 1-loop topologies

Provides systematic study at the distribution level

Does not require assumptions on the SUSY mass spectra

precise scan in the MSSM parameter space

MSSM parameter space

Distinct realizations of the MSSM in full agreement with the current constraints [Eur. Phys. J. C 71, 1835 (2011)]

	$m_{ ilde{u}_L}$	$m_{ ilde{u}_R}$	$m_{\tilde{d}_L}$	$m_{\tilde{d}_R}$	$m_{ ilde{g}}$	mass hierarchy
CMSSM 10.2.2	1162	1120	1165	1116	1255	$ ilde{q}_R < ilde{q}_L < ilde{g}$
CMSSM 40.2.2	1200	1168	1202	1165	1170	$ ilde{q}_R < ilde{g} < ilde{q}_L$
CMSSM 40.3.2	1299	1284	1301	1284	932	$ ilde{g} < ilde{q}_R < ilde{q}_L$
mGMSB 1.2	899	868	902	867	946	$ ilde{q}_R < ilde{q}_L < ilde{g}$
mGMSB 2.1.2	933	897	936	895	786	${ ilde g} < { ilde q}_R < { ilde q}_L$
mAMSB 1.3	1274	1280	1276	1289	1282	$ ilde{u}_L < ilde{u}_R < ilde{g}, ilde{d}_L < ilde{g} < ilde{d}_R$

	$ ilde{u}_L ilde{u}_L$			$ ilde{u}_R ilde{u}_R$			$ ilde{u}_L ilde{u}_R$			$ ilde{u} ilde{d}$		
	$\sigma^{\rm LO}$	$\sigma^{ m NLO}$	K	$\sigma^{\rm LO}$	$\sigma^{\rm NLO}$	K	$\sigma^{\rm LO}$	$\sigma^{\rm NLO}$	K	$\sigma^{\rm LO}$	$\sigma^{\rm NLO}$	K
CMSSM 10.2.2	26.2	29.2	1.11	31.0	34.3	1.11	26.2	30.7	1.17	87.7	104.8	1.19
CMSSM 40.2.2	22.8	26.0	1.14	26.0	29.4	1.13	25.2	30.2	1.20	75.2	91.2	1.21
CMSSM 40.3.2	14.8	18.1	1.22	15.8	19.1	1.21	23.1	29.9	1.29	49.8	63.6	1.28
mGMSB 1.2	85.3	97.0	1.14	98.1	110.7	1.13	99.7	120.4	1.21	316.6	387.8	1.22
mGMSB 2.1.2	73.9	88.7	1.20	87.6	104.5	1.19	113.9	144.5	1.27	293.3	372.6	1.27
mAMSB 1.3	16.8	18.9	1.13	16.4	18.4	1.12	16.1	19.1	1.19	48.3	58.1	1.20

General fully unconstrained scan - no simplifying assumptions in the calculation

K-factor largely insensitive to the specific MSSM scenario

Dominance by genuine QCD effects

Comparison with Multi-jet Merging

NLO and MLM agree very well - within the NLO uncertainty

K-factors remain stable for the transverse momentum

Justify the conventional procedure of global K-factor to kinematic distributions

Comparison with Multi-jet Merging

No correlations between rapidity and transverse momentum

MLM slightly harder because of the extra recoil jets from the parton shower

Degenerate vs non-degenerate squarks

Squark mass degeneracy is an usual assumption in the available NLO tools, e.g. Prospino

These assumptions are not necessary in MadGolem - freely scan the parameter space

Total rates

► LO and NLO rates scale in parallel - small deviation at the percent level K-factors essentially constant: $\sigma_{\text{Prospino}}^{\text{NLO}} = K_{\text{Prospino}} \sigma_{\text{non-degenerate}}^{\text{LO}}$

Degenerate vs non-degenerate squarks

Distributions

Deviations become much more apparent at the distribution level O(20%)

Mass degeneracy is not suitable at the distribution level!

fusion diagrams: bulk contribution from internal squark and gluino propagators at very small virtuality, i.e. almost on-shell. Particularly sensitive to squark masses.

MadGolem: Fully automized tool for NLO QCD calculations

First NLO calculation for sgluon pair and squark-neutralino production

First NLO calculation for SUSY pairs without the simplifying squark mass degeneracy

K-factors largely independent on the SUSY mass spectra

NLO and MLM distributions in good agreement

K-factors remain stable for all the kinematic relevant regions

Squark mass degeneracy is not a good approximation at the distribution level

Backup: NLO corrections

K-factor largely insensitive to the specific parameter point: Dominance by genuine QCD effects

threshold effects: $\begin{cases} \sigma_{gg} \sim \beta, & \text{s-wave component of } \sigma_{gg} \\ \sigma_{q\bar{q}} \sim \beta^3, & \text{p-wave component of } \sigma_{q\bar{q}}, & \beta = \sqrt{1 - 4m_G^2/s} \end{cases}$

Backup: NLO corrections

K-factor largely insensitive to the specific parameter point: Dominance by genuine QCD effects

threshold effects: $\begin{cases} \sigma_{gg} \sim \beta, & \text{s-wave component of } \sigma_{gg} \\ \sigma_{q\bar{q}} \sim \beta^3, & \text{p-wave component of } \sigma_{q\bar{q}}, & \beta = \sqrt{1 - 4m_G^2/s} \end{cases}$

Backup: sgluons NLO corrections

real emission and virtual box diagrams contributes to the bulk of the NLO quantum effects for σ_{gg} their size and increase with m_G come from the threshold behavior of the NLO corrections $\sigma_{gg} \sim \beta$

