The Asymptotic Safety Approach to Quantum Gravity

Andreas Nink

Institute for Physics - THEP

nink@thep.physik.uni-mainz.de

Mainz, 20 January 2012

MOTIVATION

RENORMALIZATION GROUP AND ASYMPTOTIC SAFETY

The Einstein-Hilbert Truncation

The Reason for the Fixed Point

CONCLUSIONS

MOTIVATION

RENORMALIZATION GROUP AND ASYMPTOTIC SAFETY

THE EINSTEIN-HILBERT TRUNCATION

The Reason for the Fixed Point

CONCLUSIONS

Why Quantum Gravity?

General relativity (GR) very successful on observable length scales $\ensuremath{\mathsf{But}}$:

General relativity (GR) very successful on observable length scales But:

General relativity and quantum mechanics are incompatible
 e. g. violation of the uncertainty principle

General relativity (GR) very successful on observable length scales But:

- General relativity and quantum mechanics are incompatible
 e. g. violation of the uncertainty principle
- Einstein's equations:

$$\underbrace{\begin{array}{c} G_{\mu\nu} - \frac{1}{2}\bar{\lambda}g_{\mu\nu} = 8\pi\,\bar{G}\,T_{\mu\nu} \\ \downarrow \\ \text{unquantized} \\ \text{quantized in QFT} \end{array}}_{\downarrow}$$

General relativity (GR) very successful on observable length scales But :

General relativity and quantum mechanics are incompatible
 e. g. violation of the uncertainty principle

► Einstein's equations:

$$\underbrace{G_{\mu\nu} - \frac{1}{2}\bar{\lambda}g_{\mu\nu}}_{\text{unquantized}} = 8\pi \bar{G}T_{\mu\nu}$$

$$\downarrow$$
quantized in QFT

• GR \Rightarrow spacetime singularities \Rightarrow GR makes no more predictions

General relativity (GR) very successful on observable length scales But :

General relativity and quantum mechanics are incompatible
 e. g. violation of the uncertainty principle

► Einstein's equations:

$$\underbrace{G_{\mu\nu} - \frac{1}{2}\bar{\lambda}g_{\mu\nu}}_{\text{unquantized}} = 8\pi \bar{G} T_{\mu\nu}$$

$$\downarrow$$
quantized in QFT

- GR \Rightarrow spacetime singularities \Rightarrow GR makes no more predictions
- Information loss in black hole radiation (unitarity problem)

General relativity (GR) very successful on observable length scales But:

General relativity and quantum mechanics are incompatible
 e. g. violation of the uncertainty principle

► Einstein's equations:

$$G_{\mu\nu} - \frac{1}{2}\bar{\lambda}g_{\mu\nu} = 8\pi\bar{G}T_{\mu\nu}$$

$$\downarrow$$
unquantized
unquantized in QFT

- GR \Rightarrow spacetime singularities \Rightarrow GR makes no more predictions
- Information loss in black hole radiation (unitarity problem)
- All other interactions successfully described by QFT

PROBLEMS IN QUANTIZING GRAVITY

Attempt: quantize classical Einstein-Hilbert action perturbatively

$$S_{\rm EH} = \frac{1}{16\pi\bar{G}} \int \mathrm{d}^4 x \,\sqrt{g} \left(-R + 2\bar{\lambda}\right)$$

PROBLEMS IN QUANTIZING GRAVITY

Attempt: quantize classical Einstein-Hilbert action perturbatively

$$S_{\rm EH} = \frac{1}{16\pi\bar{G}} \int \mathrm{d}^4 x \,\sqrt{g} \left(-R + 2\bar{\lambda}\right)$$

- Mass dimension of Newton's constant G: -2
 Usual power counting suggests: gravity non-renormalizable
- At one-loop level divergent counterterms vanish on shell
- ► First divergence arises at two loops, the Goroff-Sagnotti term

PROBLEMS IN QUANTIZING GRAVITY

Attempt: quantize classical Einstein-Hilbert action perturbatively

$$S_{\rm EH} = \frac{1}{16\pi\bar{G}} \int \mathrm{d}^4 x \,\sqrt{g} \left(-R + 2\bar{\lambda}\right)$$

- Mass dimension of Newton's constant G
 : -2
 Usual power counting suggests: gravity non-renormalizable
- > At one-loop level divergent counterterms vanish on shell
- ► First divergence arises at two loops, the Goroff-Sagnotti term

Result: GRAVITY IS PERTURBATIVELY NON-RENORMALIZABLE!

Approaches to Quantum Gravity

- String theory
- Loop quantum gravity
- Causal/euclidean dynamical triangulations
- Supergravity

.

- Hořava gravity
- Asymptotic Safety

Approaches to Quantum Gravity

- String theory
- Loop quantum gravity
- Causal/euclidean dynamical triangulations
- Supergravity
- Hořava gravity
- Asymptotic Safety
 - \rightarrow few a priori assumptions:
 - supersymmetry, extra dimensions, spin foam,...not needed!
 - \rightarrow relies on QFT concepts

OUTLINE

MOTIVATION

Renormalization Group and Asymptotic Safety

THE EINSTEIN-HILBERT TRUNCATION

The Reason for the Fixed Point

CONCLUSIONS

Gravity can be considered an effective field theory

- Gravity can be considered an effective field theory
- ▶ General relativity is the corresponding low energy theory: "Gravity = Einstein-Hilbert + higher order terms (R²,...)"

strongly suppressed at observable energies

- Gravity can be considered an effective field theory
- ▶ General relativity is the corresponding low energy theory: "Gravity = Einstein-Hilbert + higher order terms (R²,...)"

strongly suppressed at observable energies

▶ Higher order terms expected to get relevant at Planck scale $m_{\rm Pl} = \sqrt{\hbar c/\bar{G}} \approx 1.2\cdot 10^{19}~{\rm GeV/c^2}$

- Gravity can be considered an effective field theory
- ▶ General relativity is the corresponding low energy theory: "Gravity = Einstein-Hilbert + higher order terms (R²,...)"

strongly suppressed at observable energies

▶ Higher order terms expected to get relevant at Planck scale $m_{\rm Pl} = \sqrt{\hbar c/\bar{G}} \approx 1.2\cdot 10^{19}~{\rm GeV/c^2}$

Effective description depends on scale

 \rightarrow parameterized by RUNNING COUPLING CONSTANTS

Why do Couplings Change?

Consider an electric charge in a vacuum

Why do Couplings Change?

Consider an electric charge in a vacuum

Vacuum polarization leads to screening effects \Rightarrow We see a smaller charge at large distances (low energies)

IMPLEMENTATION OF THE RUNNING

Idea: introduce action functional established with scale dependence

 \rightarrow The effective average action Γ_k

IMPLEMENTATION OF THE RUNNING

Idea: introduce action functional established with scale dependence

 \rightarrow The effective average action Γ_k

Example: scalar field theory

IMPLEMENTATION OF THE RUNNING

Idea: introduce action functional established with scale dependence

 \rightarrow The effective average action Γ_k

Example: scalar field theory

Infinitely many effective theories, one for each energy scale \boldsymbol{k}

Recall functional methods of QFT (scalar field, euclidean PI)

Generating functional Z for Green's functions

$$Z[J] = \mathcal{N} \int \mathcal{D}\chi \, \exp\left(-S[\chi] + \int \mathrm{d}^d x \, J(x)\chi(x)\right)$$

Recall functional methods of QFT (scalar field, euclidean PI)

Generating functional Z for Green's functions

$$Z[J] = \mathcal{N} \int \mathcal{D}\chi \, \exp\left(-S[\chi] + \int \mathrm{d}^d x \, J(x)\chi(x)\right)$$

 \blacktriangleright Generating functional W for connected Green's functions $W[J] = \ln Z[J]$

Recall functional methods of QFT (scalar field, euclidean PI)

Generating functional Z for Green's functions

$$Z[J] = \mathcal{N} \int \mathcal{D}\chi \, \exp\left(-S[\chi] + \int \mathrm{d}^d x \, J(x)\chi(x)\right)$$

 \blacktriangleright Generating functional W for connected Green's functions $W[J] = \ln Z[J]$

▶ Define $\phi[J] \equiv \langle \chi \rangle^J = \frac{\delta W[J]}{\delta J}$ and solve for $J = J[\phi]$

Recall functional methods of QFT (scalar field, euclidean PI)

Generating functional Z for Green's functions

$$Z[J] = \mathcal{N} \int \mathcal{D}\chi \, \exp\left(-S[\chi] + \int \mathrm{d}^d x \, J(x)\chi(x)\right)$$

► Generating functional *W* for connected Green's functions

$$W[J] = \ln Z[J]$$

- Define $\phi[J] \equiv \langle \chi \rangle^J = \frac{\delta W[J]}{\delta J}$ and solve for $J = J[\phi]$
- Legendre transform of $W \Rightarrow$ effective action Γ Γ is the generating functional for 1PI Green's functions

$$\Gamma[\phi] = \int \mathrm{d}^d x \ J(x)\phi(x) - W[J]$$

How can we incorporate a scale dependence?

How can we incorporate a scale dependence?

So far: the integration in Z[J] = N ∫ Dχ exp(...) is over all modes χ including all momenta

How can we incorporate a scale dependence?

- So far: the integration in Z[J] = N ∫ Dχ exp(...) is over all modes χ including all momenta
- ► Now: add new cutoff action Δ_kS[χ] such that integration is over high momentum modes (p² > k²) only

How can we incorporate a scale dependence?

- So far: the integration in Z[J] = N ∫ Dχ exp(...) is over all modes χ including all momenta
- Now: add new cutoff action Δ_kS[χ] such that integration is over high momentum modes (p² > k²) only
- High energy effects will be integrated out, rest is effective theory at scale k

 \Rightarrow k-dependent generating functional Z_k

$$egin{aligned} Z_k[J] &= \mathcal{N} \int \mathcal{D}\chi \; \exp\left(-S[\chi] - \Delta_k S[\chi] + \int \mathrm{d}^d x \, J(x)\chi(x)
ight) \ & ext{with} \quad \Delta_k S[\chi] &= rac{1}{2} \int rac{\mathrm{d}^d p}{(2\pi)^d} \, \mathcal{R}_k(p^2) |\hat{\chi}(p)|^2 \end{aligned}$$

 \Rightarrow k-dependent generating functional Z_k

$$Z_k[J] = \mathcal{N} \int \mathcal{D}\chi \, \exp\left(-S[\chi] - \Delta_k S[\chi] + \int \mathrm{d}^d x \, J(x)\chi(x)\right)$$

with $\Delta_k S[\chi] = \frac{1}{2} \int \frac{\mathrm{d}^d p}{(2\pi)^d} \, \mathcal{R}_k(p^2) |\hat{\chi}(p)|^2$

$$\mathcal{R}_k(p^2) \approx \begin{cases} k^2 & \text{for } p^2 < k^2 \\ 0 & \text{for } p^2 > k^2 \end{cases}$$

Repeat construction of W and Γ , now furnished with k dependence

 $W_{\mathbf{k}}[J] = \ln Z_{\mathbf{k}}[J]$

Repeat construction of W and Γ , now furnished with k dependence

$$W_{\boldsymbol{k}}[J] = \ln Z_{\boldsymbol{k}}[J]$$

Scale dependent field expectation value: $\phi_k[J] = \langle \chi \rangle_k^J = \frac{\delta W_k[J]}{\delta J}$

$$\widetilde{\Gamma}_{k}[\phi] = \int \mathrm{d}^{d}x \ J_{k}(x)\phi(x) - W_{k}[J]$$
Construction of Γ_k

Repeat construction of W and Γ , now furnished with k dependence

$$W_{\mathbf{k}}[J] = \ln Z_{\mathbf{k}}[J]$$

Scale dependent field expectation value: $\phi_k[J] = \langle \chi \rangle_k^J = \frac{\delta W_k[J]}{\delta J}$

$$\widetilde{\Gamma}_{\mathbf{k}}[\phi] = \int \mathrm{d}^d x \; J_{\mathbf{k}}(x)\phi(x) - W_{\mathbf{k}}[J]$$

 \Rightarrow Effective average action Γ_k :

$$\Gamma_{\boldsymbol{k}}[\phi] = \widetilde{\Gamma}_{\boldsymbol{k}}[\phi] - \frac{1}{2} \int \frac{\mathrm{d}^d p}{(2\pi)^d} \,\mathcal{R}_{\boldsymbol{k}}(p^2) |\hat{\phi}(p)|^2$$

Properties of Γ_k

Properties of Γ_k

Constructed from PI ⇒ expansion can contain all field monomials compatible with the symmetry (Z₂-symmetry for scalar fields, diffeomorphism invariance for gravity), e. g.

 $\Gamma_k[\phi] = \int \mathrm{d}^4x \left[\frac{1}{2} Z_k \partial^\mu \phi \partial_\mu \phi - \frac{1}{2} m_k^2 \phi^2 - \frac{1}{4!} \Lambda_k \phi^4 + u_k \phi^6 + \dots \right]$

Properties of Γ_k

Constructed from PI ⇒ expansion can contain all field monomials compatible with the symmetry (Z₂-symmetry for scalar fields, diffeomorphism invariance for gravity), e. g.

$$\Gamma_k[\phi] = \int \mathrm{d}^4x \left[\frac{1}{2} Z_k \partial^\mu \phi \partial_\mu \phi - \frac{1}{2} m_k^2 \phi^2 - \frac{1}{4!} \Lambda_k \phi^4 + u_k \phi^6 + \dots \right]$$

▶ Consider $k \to 0$: $\mathcal{R}_{k\to 0}(p^2) = 0 \quad \forall p^2 \quad \Rightarrow \text{ no cutoff}$

$$\fbox{}_{k \to 0} \Gamma_k = \Gamma$$

usual effective action

PROPERTIES OF Γ_k

• Constructed from PI \Rightarrow expansion can contain *all field* monomials compatible with the symmetry (\mathbb{Z}_2 -symmetry for scalar fields, diffeomorphism invariance for gravity), e. g.

$$\Gamma_k[\phi] = \int \mathrm{d}^4 x \left[\frac{1}{2} Z_k \partial^\mu \phi \partial_\mu \phi - \frac{1}{2} m_k^2 \phi^2 - \frac{1}{4!} \Lambda_k \phi^4 + u_k \phi^6 + \dots \right]$$

• Consider $k \to 0$: $\mathcal{R}_{k \to 0}(p^2) = 0 \quad \forall p^2 \Rightarrow \text{ no cutoff}$

• Limit $k \to \infty$: cutoff suppresses *all* modes, except $\chi = \phi$

$$\lim_{k\to\infty}\Gamma_k=S$$

microscopic (bare) action

MEANING OF THE SCALE DEPENDENCE

Meaning of decreasing k: successive integrating out of degrees of freedom

MEANING OF THE SCALE DEPENDENCE

Meaning of decreasing k: successive integrating out of degrees of freedom

Comparable to discrete blockspin transformations

Relation between different effective theories described by Γ_k at different scales k?

Relation between different effective theories described by Γ_k at different scales $k? \rightarrow$ renormalization group (RG)

Relation between different effective theories described by Γ_k at different scales $k? \rightarrow$ renormalization group (RG)

 \blacktriangleright Take a scale derivative of $\Gamma_k \ \Rightarrow \ {\rm Wetterich} \ {\rm equation}$

$$k\partial_k\Gamma_k[\phi] = \frac{1}{2}\operatorname{Tr}\left[\left(\Gamma_k^{(2)} + \mathcal{R}_k\right)^{-1}k\partial_k\mathcal{R}_k\right]$$

with the Hessian $(\Gamma_k^{(2)}[\phi])(x,y) = \frac{\delta^2 \Gamma_k[\phi]}{\delta \phi(x) \delta \phi(y)}$

Relation between different effective theories described by Γ_k at different scales $k? \rightarrow$ renormalization group (RG)

 \blacktriangleright Take a scale derivative of $\Gamma_k \ \Rightarrow \ {\rm Wetterich} \ {\rm equation}$

$$k\partial_k\Gamma_k[\phi] = \frac{1}{2}\operatorname{Tr}\left[\left(\Gamma_k^{(2)} + \mathcal{R}_k\right)^{-1}k\partial_k\mathcal{R}_k\right]$$

with the Hessian $(\Gamma_k^{(2)}[\phi])(x,y) = \frac{\delta^2 \Gamma_k[\phi]}{\delta \phi(x) \delta \phi(y)}$

Properties of the FRGE:

Relation between different effective theories described by Γ_k at different scales $k? \rightarrow$ renormalization group (RG)

 \blacktriangleright Take a scale derivative of $\Gamma_k \ \Rightarrow \ {\rm Wetterich} \ {\rm equation}$

$$k\partial_k\Gamma_k[\phi] = \frac{1}{2}\operatorname{Tr}\left[\left(\Gamma_k^{(2)} + \mathcal{R}_k\right)^{-1}k\partial_k\mathcal{R}_k\right]$$

with the Hessian $(\Gamma_k^{(2)}[\phi])(x,y) = \frac{\delta^2 \Gamma_k[\phi]}{\delta \phi(x) \delta \phi(y)}$

- Properties of the FRGE:
 - functional integro-differential equation non-linear
 - exact (\rightarrow non-perturbative) UV finite IR finite
 - independent of PI formulation (holds for all Γ_k)

Evolution of Γ_k in Theory Space

Evolution of Γ_k in Theory Space

Define dimensionless couplings: $g_{\alpha} = k^{-d_{\alpha}} \bar{g}_{\alpha}$ with $d_{\alpha} = [\bar{g}_{\alpha}]$

Define dimensionless couplings: $g_{\alpha} = k^{-d_{\alpha}} \bar{g}_{\alpha}$ with $d_{\alpha} = [\bar{g}_{\alpha}]$

- Asymptotic Safety "=" well-defined high energy limit $k \to \infty$

Define dimensionless couplings: $g_{\alpha} = k^{-d_{\alpha}} \bar{g}_{\alpha}$ with $d_{\alpha} = [\bar{g}_{\alpha}]$

- Asymptotic Safety "=" well-defined high energy limit $k \to \infty$
- ► FIXED POINT: couplings stop running: $k\partial_k g_\alpha = \beta_\alpha = 0$

Define dimensionless couplings: $g_{\alpha} = k^{-d_{\alpha}} \bar{g}_{\alpha}$ with $d_{\alpha} = [\bar{g}_{\alpha}]$

- Asymptotic Safety "=" well-defined high energy limit $k
 ightarrow \infty$
- ► FIXED POINT: couplings stop running: $k\partial_k g_\alpha = \beta_\alpha = 0$
- UV attractive

Define dimensionless couplings: $g_{\alpha} = k^{-d_{\alpha}} \bar{g}_{\alpha}$ with $d_{\alpha} = [\bar{g}_{\alpha}]$

- \blacktriangleright Asymptotic Safety "=" well-defined high energy limit $k \rightarrow \infty$
- ► FIXED POINT: couplings stop running: $k\partial_k g_\alpha = \beta_\alpha = 0$
- UV attractive

Idea (for 1 coupling) \rightarrow

Theory space

×

Theory space

×

Tool to find out whether a given direction is UV-attractive

Tool to find out whether a given direction is UV-attractive

• Linearize RG flow near the fixed point $\{g_{\alpha}^*\}$

Tool to find out whether a given direction is UV-attractive

 \blacktriangleright Linearize RG flow near the fixed point $\{g^*_\alpha\}$

►
$$k\partial_k g_\alpha(k) = \beta_\alpha \approx \sum_{\gamma} B_{\alpha\gamma} (g_\gamma(k) - g_\gamma^*)$$

with the Jacobian matrix $B_{\alpha\gamma}$ of the β -functions

Tool to find out whether a given direction is UV-attractive

 \blacktriangleright Linearize RG flow near the fixed point $\{g^*_\alpha\}$

►
$$k\partial_k g_\alpha(k) = \beta_\alpha \approx \sum_{\gamma} B_{\alpha\gamma} (g_\gamma(k) - g_\gamma^*)$$

with the Jacobian matrix $B_{\alpha\gamma}$ of the β -functions

The negative eigenvalues of B are referred to as critical exponents θ

Tool to find out whether a given direction is UV-attractive

• Linearize RG flow near the fixed point $\{g^*_{\alpha}\}$

►
$$k\partial_k g_\alpha(k) = \beta_\alpha \approx \sum_{\gamma} B_{\alpha\gamma} (g_\gamma(k) - g_\gamma^*)$$

with the Jacobian matrix $B_{\alpha\gamma}$ of the β -functions

- The negative eigenvalues of B are referred to as critical exponents θ
- If Re(θ) > 0 the corresponding direction is UV-attractive If Re(θ) < 0 the corresponding direction is UV-repulsive</p>
How can we solve the FRGE? (∞ many differential equations)

► First idea: expand FRGE in terms of some small coupling ⇒ known perturbative β-functions

How can we solve the FRGE? (∞ many differential equations)

First idea: expand FRGE in terms of some small coupling

 known perturbative β-functions

 f gravity

- First idea: expand FRGE in terms of some small coupling
 ⇒ known perturbative β-functions ½ gravity
- Second attempt: project flow onto subspace

$$\Gamma_k[\phi] = \sum_{\alpha=1}^{\infty} g_{\alpha}(k) \mathcal{P}_{\alpha}[\phi]$$

- First idea: expand FRGE in terms of some small coupling
 ⇒ known perturbative β-functions ½ gravity
- Second attempt: project flow onto subspace

$$\Gamma_k[\phi] = \sum_{\alpha=1}^{\infty} g_\alpha(k) \mathcal{P}_\alpha[\phi]$$

- First idea: expand FRGE in terms of some small coupling
 ⇒ known perturbative β-functions ½ gravity
- Second attempt: project flow onto subspace

$$\Gamma_k[\phi] = \sum_{\alpha=1}^N g_\alpha(k) \mathcal{P}_\alpha[\phi]$$

How can we solve the FRGE? (∞ many differential equations)

- First idea: expand FRGE in terms of some small coupling
 ⇒ known perturbative β-functions ½ gravity
- Second attempt: project flow onto subspace

$$\Gamma_k[\phi] = \sum_{\alpha=1}^N g_\alpha(k) \mathcal{P}_\alpha[\phi]$$

► Truncation {P_α[·], α = 1,..., N} such that essential physics is contained → check validity

- First idea: expand FRGE in terms of some small coupling
 ⇒ known perturbative β-functions ½ gravity
- Second attempt: project flow onto subspace

$$\Gamma_k[\phi] = \sum_{\alpha=1}^N g_\alpha(k) \mathcal{P}_\alpha[\phi]$$

- ► Truncation {P_α[·], α = 1,..., N} such that essential physics is contained → check validity
- Exploits non-perturbative character of the FRGE

- First idea: expand FRGE in terms of some small coupling
 ⇒ known perturbative β-functions ½ gravity
- Second attempt: project flow onto subspace

$$\Gamma_k[\phi] = \sum_{\alpha=1}^N g_\alpha(k) \mathcal{P}_\alpha[\phi]$$

- ► Truncation {P_α[·], α = 1,..., N} such that essential physics is contained → check validity
- Exploits non-perturbative character of the FRGE
- Gives finite number of differential equations

THE ASYMPTOTIC SAFETY APPROACH TO QUANTUM GRAVITY

OUTLINE

MOTIVATION

RENORMALIZATION GROUP AND ASYMPTOTIC SAFETY

The Einstein-Hilbert Truncation

The Reason for the Fixed Point

CONCLUSIONS

THE EINSTEIN-HILBERT TRUNCATION

Ansatz for Γ_k

 Classical Einstein-Hilbert action, but with running couplings, plus gauge fixing action term

$$\left(\Gamma_k[g] = \frac{1}{16\pi G_k} \int \mathrm{d}^d x \sqrt{g} \left\{-R(g) + 2\bar{\lambda}_k\right\} + \Gamma_k^{\mathrm{gf}}\right)$$

THE EINSTEIN-HILBERT TRUNCATION

Ansatz for Γ_k

 Classical Einstein-Hilbert action, but with running couplings, plus gauge fixing action term

$$\left(\Gamma_k[g] = \frac{1}{16\pi G_k} \int \mathrm{d}^d x \sqrt{g} \left\{-R(g) + 2\bar{\lambda}_k\right\} + \Gamma_k^{\mathrm{gf}}\right)$$

Procedure

- Insert Γ_k into the FRGE
- Extract differential equations for G_k and $\overline{\lambda}_k$

$$k\partial_k\Gamma_k = \frac{1}{2}\operatorname{Tr}\left[\left(\Gamma_k^{(2)} + \mathcal{R}_k\right)^{-1}k\partial_k\mathcal{R}_k\right]$$

$$\Gamma_k = \frac{1}{16\pi G_k} \int \mathrm{d}^d x \sqrt{g} \Big\{ -R(g) + 2\bar{\lambda}_k \Big\} + \dots$$

$$k\partial_k\Gamma_k = \frac{1}{2}\operatorname{Tr}\left[\left(\Gamma_k^{(2)} + \mathcal{R}_k\right)^{-1} k\partial_k\mathcal{R}_k\right]$$
$$\Gamma_k = \frac{1}{16\pi G_k}\int \mathrm{d}^d x\sqrt{g}\left\{-R(g) + 2\bar{\lambda}_k\right\} + \dots$$

$$-\frac{1}{16\pi} k \partial_k \left(\frac{1}{G_k}\right) \int \mathrm{d}^d x \sqrt{g} R$$
$$+\frac{1}{8\pi} k \partial_k \left(\frac{\bar{\lambda}_k}{G_k}\right) \int \mathrm{d}^d x \sqrt{g} + \dots$$

Compare coefficients of $\int \mathrm{d}^d x \sqrt{g}$ and $\int \mathrm{d}^d x \sqrt{g} R$

- \Rightarrow evolution equations for G_k and $\bar{\lambda}_k$
- Dimensionless Newton's constant and cosmological constant

$$g_k = k^{d-2} G_k$$
, $\lambda_k = k^{-2} \overline{\lambda}_k$

- \Rightarrow evolution equations for G_k and $\bar{\lambda}_k$
- Dimensionless Newton's constant and cosmological constant

$$g_k = k^{d-2} G_k$$
, $\lambda_k = k^{-2} \overline{\lambda}_k$

▶ \Rightarrow evolution equations for g_k and λ_k (analytical!)

$$\begin{aligned} k\partial_k g_k &= (d - 2 + \eta_N)g_k \\ k\partial_k \lambda_k &= (\eta_N - 2)\lambda_k + 2\pi g_k (4\pi)^{-d/2} \Big[2d(d+1)\Phi_{\frac{d}{2}}^1(-2\lambda_k) \\ &- d(d+1)\eta_N \widetilde{\Phi}_{\frac{d}{2}}^1(-2\lambda_k) - 8d\Phi_{\frac{d}{2}}^1(0) \Big] \end{aligned}$$

with threshold functions $\Phi,\,\widetilde{\Phi}$ and anomalous dimension η_N

NUMERICAL SOLUTION IN FOUR DIMENSIONS

The Asymptotic Safety Approach to Quantum Gravity $\hfill \label{eq:constraint}$ The Einstein-Hilbert Truncation

NUMERICAL SOLUTION IN FOUR DIMENSIONS

The Asymptotic Safety Approach to Quantum Gravity $\hfill \label{eq:constraint}$ The Einstein-Hilbert Truncation

NUMERICAL SOLUTION IN FOUR DIMENSIONS

• Existence of NGFP in d = 4 for all cutoff functions

- Existence of NGFP in d = 4 for all cutoff functions
- Positive real part of critical exponents
 > UV-attractive

- Existence of NGFP in d = 4 for all cutoff functions
- Positive real part of critical exponents
 ⇒ UV-attractive
- Positive Newton's constant g^*

- Existence of NGFP in d = 4 for all cutoff functions
- Positive real part of critical exponents
 ⇒ UV-attractive
- Positive Newton's constant g^*
- Product $g^*\lambda^*$ and critical exponents (almost) universal

- Existence of NGFP in d = 4 for all cutoff functions
- Positive real part of critical exponents
 ⇒ UV-attractive
- Positive Newton's constant g^*
- Product $g^*\lambda^*$ and critical exponents (almost) universal
- Extended work: fixed point not an artifact of the truncation

- Existence of NGFP in d = 4 for all cutoff functions
- Positive real part of critical exponents
 ⇒ UV-attractive
- Positive Newton's constant g^*
- Product $g^*\lambda^*$ and critical exponents (almost) universal
- Extended work: fixed point not an artifact of the truncation
- In $d = 2 + \epsilon$ the perturbative result is reproduced

- Existence of NGFP in d = 4 for all cutoff functions
- Positive real part of critical exponents
 ⇒ UV-attractive
- Positive Newton's constant g^*
- Product $g^*\lambda^*$ and critical exponents (almost) universal
- Extended work: fixed point not an artifact of the truncation
- In $d = 2 + \epsilon$ the perturbative result is reproduced
- ⇒ supports Asymptotic Safety scenario

EINSTEIN-HILBERT TRUNCTATION: EXTENSIONS

Check validity of truncation ansatz

- Cutoff dependence, gauge dependence
- More general truncations
 - R^2 , $R^2 + C^2$, f(R), ... running ghost sector
 - running gauge fixing term inclusion of matter fields
 - bimetric truncations inclusion of boundary terms
 - new gravitational field variables

EINSTEIN-HILBERT TRUNCTATION: EXTENSIONS

Check validity of truncation ansatz

- Cutoff dependence, gauge dependence
- More general truncations
 - R^2 , $R^2 + C^2$, f(R), ... running ghost sector
 - running gauge fixing term inclusion of matter fields
 - bimetric truncations inclusion of boundary terms
 - new gravitational field variables

Results

- Non-trivial fixed point always exists
- UV critical surface finite dimensional (?)

The Asymptotic Safety Approach to Quantum Gravity \Box The Reason for the Fixed Point

OUTLINE

MOTIVATION

RENORMALIZATION GROUP AND ASYMPTOTIC SAFETY

THE EINSTEIN-HILBERT TRUNCATION

The Reason for the Fixed Point

CONCLUSIONS

The Asymptotic Safety Approach to Quantum Gravity \Box The Reason for the Fixed Point

MINIMAL VS. NON-MINIMAL COUPLING TERMS

Consider analogy to magnetism

$$H = -\frac{1}{2m} \left(\nabla - ieA\right)^2 - \frac{e}{2m} \,\sigma \cdot B$$

Consider analogy to magnetism

$$H = -\frac{1}{2m} \left(\nabla - ieA\right)^2 - \frac{e}{2m} \sigma \cdot B$$

- Minimal coupling term
 (→ covariant derivative, -D²)
- Causes orbital motion
- Induces field in opposite direction
- Diamagnetism

Consider analogy to magnetism

$$H = -\frac{1}{2m} (\nabla - ieA)^2 - \frac{e}{2m} \sigma \cdot B$$

- Minimal coupling term
 (→ covariant derivative, -D²)
- Causes orbital motion
- Induces field in opposite direction
- Diamagnetism

- ► Non-minimal coupling term (→ potential term)
- Causes spin alignment
- Amplifies external field
- Paramagnetism

Consider analogy to magnetism

$$H = -\frac{1}{2m} (\nabla - ieA)^2 - \frac{e}{2m} \sigma \cdot B$$

- Minimal coupling term
 (→ covariant derivative, -D²)
- Causes orbital motion
- Induces field in opposite direction
- Diamagnetism

- Non-minimal coupling term
 (→ potential term)
- Causes spin alignment
- Amplifies external field
- Paramagnetism

Minimal and non-minimal couplings are competing effects

Similar arguments for gravity (here: Einstein-Hilbert truncation)

Similar arguments for gravity (here: Einstein-Hilbert truncation)

• Introduce background field \bar{g} (arbitrary, not flat)

$$g_{\mu\nu} = \bar{g}_{\mu\nu} + h_{\mu\nu}$$

• On background: covariant derivative \bar{D} , scalar curvature \bar{R}
MINIMAL VS. NON-MINIMAL COUPLING TERMS

Similar arguments for gravity (here: Einstein-Hilbert truncation)

• Introduce background field \bar{g} (arbitrary, not flat)

$$g_{\mu\nu} = \bar{g}_{\mu\nu} + h_{\mu\nu}$$

- \blacktriangleright On background: covariant derivative $ar{D}$, scalar curvature $ar{R}$
- Reexpress Γ_k , $\Gamma_k^{(2)}$ in terms of background and fluctuation

$$\left(\Gamma_{k}^{(2)}\right)_{hh} \sim \left[-\bar{D}^{2}-2\bar{\lambda}_{k}+C\bar{R}\right]$$

MINIMAL VS. NON-MINIMAL COUPLING TERMS

Similar arguments for gravity (here: Einstein-Hilbert truncation)

• Introduce background field \bar{g} (arbitrary, not flat)

$$g_{\mu\nu} = \bar{g}_{\mu\nu} + h_{\mu\nu}$$

- On background: covariant derivative \bar{D} , scalar curvature \bar{R}
- Reexpress Γ_k , $\Gamma_k^{(2)}$ in terms of background and fluctuation

$$\left(\Gamma_{k}^{(2)}\right)_{hh} \sim \left[-\bar{D}^{2}-2\bar{\lambda}_{k}+C\bar{R}\right]$$

Minimal and non-minimal coupling of h to the background

MINIMAL VS. NON-MINIMAL COUPLING TERMS

Similar arguments for gravity (here: Einstein-Hilbert truncation)

• Introduce background field \bar{g} (arbitrary, not flat)

$$g_{\mu\nu} = \bar{g}_{\mu\nu} + h_{\mu\nu}$$

- On background: covariant derivative \bar{D} , scalar curvature \bar{R}
- Reexpress Γ_k , $\Gamma_k^{(2)}$ in terms of background and fluctuation

$$\left(\Gamma_{k}^{(2)}\right)_{hh} \sim \left[-\bar{D}^{2}-2\bar{\lambda}_{k}+C\bar{R}\right]$$

- Minimal and non-minimal coupling of h to the background
- ► Two different effects → Competing? Relative contribution?

Separating Minimal and Non-Minimal Terms

Recall result from Einstein-Hilbert truncation

- In particular: existence of non-trivial UV fixed point
- UV-attractive

Separating Minimal and Non-Minimal Terms

Recall result from Einstein-Hilbert truncation

- In particular: existence of non-trivial UV fixed point
- UV-attractive

Repeat calculation, but take into account minimal and non-minimal contributions separately

- Existence of fixed point, UV-attractive directions
- Flow diagrams

The Asymptotic Safety Approach to Quantum Gravity \Box The Reason for the Fixed Point

Result - non-Minimal Terms Only

The Asymptotic Safety Approach to Quantum Gravity $\hfill \Box$ The Reason for the Fixed Point

Result - non-Minimal Terms Only

The Asymptotic Safety Approach to Quantum Gravity $\hfill The Reason for the Fixed Point$

Result – Minimal Terms Only

The Asymptotic Safety Approach to Quantum Gravity $\hfill \Box$ The Reason for the Fixed Point

Result – Minimal Terms Only

RESULTS

	g^*	λ^*	$(g^*\lambda^*)$	$\mathrm{Re}(\theta)$	$\operatorname{Im}(\theta)$
Exact result	0.7073	0.1932	0.1367 0.1355	1.475	3.043
Minimal only	-	-	-	-	

 \Rightarrow Theory almost completely determined by non-minimal terms

RESULTS

	g^*	λ^*	$(g^*\lambda^*)$	$\mathrm{Re}(\theta)$	$\mathrm{Im}(\theta)$
Exact result Non-minimal only	0.7073 0.7073	$0.1932 \\ 0.1916$	$0.1367 \\ 0.1355$	1.475 1.255	3.043 2.712
Minimal only	_	_	_	_	_

 \Rightarrow Theory almost completely determined by non-minimal terms

EXISTENCE OF NGFP DUE TO NON-MINIMAL TERMS ONLY

RESULTS

	g^*	λ^*	$(g^*\lambda^*)$	$\mathrm{Re}(\theta)$	$\mathrm{Im}(\theta)$
Exact result	0.7073	0.1932	0.1367	1.475	3.043
Minimal only	-	0.1910	-	-	

 \Rightarrow Theory almost completely determined by non-minimal terms

EXISTENCE OF NGFP DUE TO NON-MINIMAL TERMS ONLY

- Holds for all cutoffs
- Method applicable to other theories
 (⇒ reason for asymptotic freedom in QCD)

MOTIVATION

RENORMALIZATION GROUP AND ASYMPTOTIC SAFETY

THE EINSTEIN-HILBERT TRUNCATION

The Reason for the Fixed Point

 Asymptotic Safety program candidate for the description of quantum gravity

- Asymptotic Safety program candidate for the description of quantum gravity
- Running of couplings determined by FRGE

- Asymptotic Safety program candidate for the description of quantum gravity
- Running of couplings determined by FRGE
- Relies on particular truncation ansatz \rightarrow check validity

- Asymptotic Safety program candidate for the description of quantum gravity
- Running of couplings determined by FRGE
- \blacktriangleright Relies on particular truncation ansatz \rightarrow check validity
- NGFP exists in all truncations considered so far

- Asymptotic Safety program candidate for the description of quantum gravity
- Running of couplings determined by FRGE
- \blacktriangleright Relies on particular truncation ansatz \rightarrow check validity
- ► NGFP exists in all truncations considered so far
- In Einstein-Hilbert truncation: due to non-minimal coupling

- Asymptotic Safety program candidate for the description of quantum gravity
- Running of couplings determined by FRGE
- \blacktriangleright Relies on particular truncation ansatz \rightarrow check validity
- ► NGFP exists in all truncations considered so far
- In Einstein-Hilbert truncation: due to non-minimal coupling
- Strong indications that gravity is asymptotically safe