Skyrmions in Composite Higgs Models

Marc Gillioz

Particle Physics & Cosmology

イロト イ押 トイヨ トイヨト

■■ 2990

December 4, 2012

based on arXiv:1012.5288, 1103.5990, 1111.2047 in collaboration with A. von Manteuffel, P. Schwaller and D. Wyler

Outline

- [Composite Higgs & Little Higgs models](#page-2-0)
- [Lessons from low-energy QCD](#page-14-0)
- [Skyrmions in composite Higgs models](#page-21-0)
- [The electric charge problem](#page-44-0)

K ロ K K K K K K K X X X 를 X X Y K V K Y X R Y X R Y X X Y X X Y X X Y X X Y X X Y X X Y X X Y X X Y X X Y

The Standard Model as an effective theory

Standard Model Lagrangian

$$
\mathcal{L} = -\frac{1}{4} G_{\mu\nu}^a G^{\mu\nu a} - \frac{1}{4} W_{\mu\nu}^i W^{\mu\nu i} - \frac{1}{4} B_{\mu\nu} B^{\mu\nu} \qquad \text{gauge group}
$$

\n
$$
+ i \overline{q_L} \not{\!D} q_L + i \overline{u_R} \not{\!D} u_R + i \overline{d_R} \not{\!D} d_R + \dots \qquad \text{fermions}
$$

\n
$$
+ \frac{v^2}{4} \text{Tr} \left(D_\mu \Sigma^\dagger D^\mu \Sigma \right) + \frac{v^2}{\sqrt{2}} \overline{q}_L^{(i)} \Sigma \left(Y_u^{(i,j)} u_R^{(j)} \right) + \dots
$$

\nEWSB & mass

3 massless scalars $\Sigma = \exp \left[i \, \pi^i \, \sigma^i / v \right]$ become the longitudinal polarisation of the gauge bosons

 \rightarrow valid theory up to $\Lambda = 4\pi v \approx 3.1$ TeV

The Standard Model as an effective theory

perturbative unitarity is lost already at 1.7 TeV

 4 ロ) 4 何) 4 ミ) 4 3 \rightarrow

÷,

 299

The Standard Model as an effective theory

Standard Model Lagrangian

$$
\mathcal{L}=-\tfrac{1}{4}G_{\mu\nu}^aG^{\mu\nu\,a}-\tfrac{1}{4}W_{\mu\nu}^iW^{\mu\nu\,i}-\tfrac{1}{4}B_{\mu\nu}B^{\mu\nu}
$$

$$
+i\,\overline{q_L}\,\cancel{D}\,q_L+i\,\overline{u_R}\,\cancel{D}\,u_R+i\,\overline{d_R}\,\cancel{D}\,d_R+\ldots
$$

$$
+ \frac{v^2}{4} \operatorname{Tr} \left(D_\mu \Sigma^\dagger D^\mu \Sigma \right) \left(1 + 2 a \frac{h}{v} + b \frac{h^2}{v^2} + \dots \right) + \frac{v}{\sqrt{2}} \overline{q}_L^{(i)} \Sigma \left(\begin{array}{c} Y_u^{(i,j)} u_R^{(j)} \\ Y_d^{(i,j)} d_R^{(j)} \end{array} \right) \left(1 + c_{u,d}^{(i,j)} \frac{h}{v} + \dots \right) + \dots + \frac{1}{2} \partial_\mu h \, \partial^\mu h - V(h)
$$

 $\mathbf{E} = \mathbf{A} \oplus \mathbf{A} + \mathbf{A$

 2990

The Standard Model Higgs doublet

The hierarchy problem

Radiative corrections to the Higgs mass are quadratically divergent

Renormalisability \Rightarrow cancellation by a counter-term

$$
m_{\text{phys}}^2 = m_{\text{bare}}^2 + \delta m^2
$$

(125 GeV)² \approx (10¹⁵ GeV)² - (10¹⁵ GeV)²

KORK EXTERNE PROVIDE

Still, the cancellation required is highly unnatural.

Solutions to the hierarchy problem

Scalar masses are not protected by any symmetry

Light scalar particles can naturally exist:

- **•** in supersymmetric theories, as part of a supermultiplet
- in strongly-coupled theories, as (pseudo-)Goldstone bosons (like the π 's in QCD)
- in extra-dimensional models, as the extra-dimensional component of a gauge field (zero mode)

イロト 不優 トイモト イモト 一重

 2990

Technicolor / Holographic higgsless models

The longitudinal components of the W^{\pm} and Z gauge bosons are Goldstone bosons of the strong sector

$$
\mathcal{L} = \frac{v^2}{4} \operatorname{Tr} \left(D_{\mu} \Sigma^{\dagger} D^{\mu} \Sigma \right)
$$

EWSB triggered by the strong dynamics

The 125 GeV particle could be a light resonance of the strong sector (dilaton)

イロト イ押 トイヨト イヨト

 299

However disfavoured by electroweak precision data (it's not a Higgs!)

[Composite Higgs & Little Higgs](#page-2-0) [Lessons from QCD](#page-14-0) [Skyrmions in composite Higgs models](#page-21-0) [The electric charge problem](#page-44-0)

(Holographic) Composite Higgs models

EWSB is triggered by a Higgs doublet, i.e. four pseudo-Goldstone bosons with a potential generated radiatively

$$
\mathcal{L} = \frac{f^2}{4} \operatorname{Tr} \left(D_\mu \Sigma^\dagger D^\mu \Sigma \right)
$$

 4 ロ) 4 6) 4 3) 4 3) 4 3)

 299

[Composite Higgs & Little Higgs](#page-2-0) [Lessons from QCD](#page-14-0) [Skyrmions in composite Higgs models](#page-21-0) [The electric charge problem](#page-44-0)

(Holographic) Composite Higgs models

EWSB is triggered by a Higgs doublet, i.e. four pseudo-Goldstone bosons with a potential generated radiatively

$$
\mathcal{L} = \frac{f^2}{4} \operatorname{Tr} \left(D_\mu \Sigma^\dagger D^\mu \Sigma \right)
$$

Why holography?

Such a model may require scalar fields in the 4D strongly-coupled description \rightarrow provided by a warped 5D

 4 ロ) 4 何) 4 ミ) 4 3 \rightarrow

 299

(Holographic) Composite Higgs models

EWSB is triggered by a Higgs doublet, i.e. four pseudo-Goldstone bosons with a potential generated radiatively

$$
\mathcal{L} = \frac{f^2}{4} \operatorname{Tr} \left(D_\mu \Sigma^\dagger D^\mu \Sigma \right)
$$

Why holography?

Such a model may require scalar fields in the 4D strongly-coupled description \rightarrow provided by a warped 5D

Realistic models contains additional particles below the cutoff

Little Higgs models

EWSB is generated radiatively by gauge boson and fermion loops

+ + ≈ Λ 2 (4π) 2 ≈ f 2

The Little hierarchy problem

 v is naturally generated around the scale f

- \bullet $f \leq 1$ TeV requires a moderate amount of fine-tuning \rightarrow holographic composite Higgs models
- \bullet $f \gtrsim 1$ TeV requires additional symmetry to cancel the loops \rightarrow little Higgs models

cancellation of quadratic divergent contributions to the Higgs potential through collective symmetry breaking

Phenomenology of composite Higgs / little Higgs models

Weak regime phenomenology:

- non-standard Higgs couplings
- top partners
- \bullet vector resonances
- additional gauge fields W', Z'
- **•** flavour physics

. . .

Strong regime phenomenology:

- new heavy stable particles? \rightarrow AdS/CFT techniques ?
	- \rightarrow topological soliton models

イロト イタト イモト イモト

 Ω

The chiral low-energy effective theory of QCD

In the absence of quark masses, the QCD Lagrangian has a global chiral symmetry

$$
U(N_f)_L \times U(N_f)_R
$$

= $SU(N_f)_V \times SU(N_f)_A \times U(1)_V$ [$\times U(1)_A$]

Quarks condensate and break the chiral symmetry

 $\langle \overline{q_L^a} q_R^b \rangle \propto \delta^{ab}$

 \rightarrow only the $SU(N_f)_V \times U(1)_V$ symmetry survives

$$
\Rightarrow N_f^2 - 1 \text{ massless Goldstone bosons}
$$

$$
\Sigma = \exp[i \pi^a T^a / f_\pi]
$$
 $\langle \Sigma \rangle = 1$

KORK EXTERNE PROVIDE

σ -model description for the Goldstone bosons

Non-linear sigma-model

$$
\mathcal{L} = \frac{f_{\pi}^2}{4} \operatorname{Tr} \left(D_{\mu} \Sigma^{\dagger} D^{\mu} \Sigma \right) + \mathcal{O} \left[(\partial \Sigma)^4 \right]
$$

No dependence on the gauge group, only on the flavour symmetry

Describes the pion's electromagnetic and self-interactions: e.g. in the two-flavour case $N_f = 2$, $\Sigma = \exp(i\pi \cdot \sigma/f_\pi)$

$$
\mathcal{L} = \frac{1}{2} |D_{\mu} \pi|^2 + \frac{1}{6f_{\pi}^2} \left[|\pi \cdot D_{\mu} \pi|^2 - \pi^2 |D_{\mu} \pi|^2 \right] + \dots
$$

But this Lagrangian also contains skyrmions

What are skyrmions?

Skyrmions are topological solitons

- extended field configurations, with finite size and finite energy
- stable at the classical level since they cannot be deformed into the vacuum by infinitesimal transformations

The topological index of a field configuration can be expressed as an integral

$$
\mathcal{B} = \frac{1}{24\pi^2} \epsilon_{ijk} \int d^3x \,\mathrm{Tr} \left(\Sigma^{\dagger} \partial_i \Sigma \,\partial_j \Sigma^{\dagger} \partial_k \Sigma \right) \in \mathbb{Z}
$$

and corresponds to the baryon number of the theory $E.$ Witten (1983)

$$
\Rightarrow
$$
 the skyrmions in QCD are baryons

KORK STRATER STRACK

Topology of the vacuum manifold

The presence of topological defects is characterised by the homotopy groups of the vacuum manifold G/H

The Skyrme model

In general $\pi_3(G/H) \neq 0$ is not sufficient to guarantee the presence of skyrmions, higher order terms are needed to stabilise the skyrmion size and mass Derrick (1964)

The Skyrme Lagrangian

Add a single higher-order term, antisymmetric in Lorentz indices

$$
\mathcal{L} = \frac{f_{\pi}^{2}}{4} \text{Tr} \left(\partial_{\mu} \Sigma \partial^{\mu} \Sigma^{\dagger} \right) + \frac{1}{32e^{2}} \text{Tr} \left(\left[\Sigma^{\dagger} \partial_{\mu} \Sigma, \Sigma^{\dagger} \partial_{\nu} \Sigma \right] \right)^{2}
$$

T. H. R. Skyrme (1961)

KORK EXTERNE PROVIDE

- Stabilises the size and mass of the skyrmion
- Only quadratic in time derivatives \Rightarrow canonical quantisation procedure

Skyrmions in QCD

Baryon properties with $f_{\pi} \cong 93$ MeV (exp. data) and $e \cong 4.25$:

F. Meier, H. Walliser (1997)K ロ > K @ > K 할 > K 할 > → 할 → ⊙ Q @

Limitations of the Skyrme model

Good agreement with the experimental data already with a single free parameter, but

- the skyrmion lives above the cutoff of the theory
- all terms in the derivative expansion can equally contribute to the skyrmion mass
- in general, no formal proof that the skyrmion corresponds to a physical state in the quantum theory, although works in some non-QCD-like theories R. Auzzi, S. Bolognesi, M. Shifman (2007-2009)

Solution from AdS/CFT?

- stable skyrmion are present in extra-dimensional models
- • their size is larger than the cutoff length

A. Pomarol, A. Wulzer (2007)**KORK EXTERNE PROVIDE**

KORK EXTERNE PROVIDE

Skyrmions in composite Higgs & little Higgs models

Are there stable skyrmions in composite Higgs & little Higgs models ?

Differences with respect to QCD:

- **1** Possibly different symmetry breaking pattern \rightarrow different vacuum topology
	- \rightarrow not all models have skyrmions
- $\bullet\hspace{0.1cm}f$ is much larger (of order 10^4 times) \rightarrow much larger skyrmion mass, expected 1–100 TeV \rightarrow much smaller radius / annihilation cross-section
- **3** Different interplay with gauge fields
	- \rightarrow skyrmion decay?
	- \rightarrow electric charge

KORKAR KERKER DRAM

Relic density

Skyrmions are thermally produced in the early universe, independently of the production mechanism

Skyrmion decay can occur through instanton effects, depending on the gauge group \rightarrow suppression factor $\exp \left(-8 \pi^2/g^2 \right)$ make them long-lived

- If neutral, could provide the observed dark matter relic density, for skyrmion masses in the range 1–10 TeV "topological dark matter" Murayama, Shu (2009)
- If charged, affect dramatically the early universe cosmology

Models

A (non-exhaustive) list of composite / little Higgs models

Example: the minimal moose

$$
\mathcal{L} = \frac{f^2}{4} \operatorname{Tr} \left(D_{\mu} \Sigma D^{\mu} \Sigma^{\dagger} \right) + \text{higher order terms}
$$

$$
\Sigma(x) \in SU(3) \qquad \langle \Sigma(x) \rangle = 1
$$

KORK EXTERNE PROVIDE

Example: the minimal moose

$$
\mathcal{L} = \frac{f^2}{4} \operatorname{Tr} \left(D_{\mu} \Sigma D^{\mu} \Sigma^{\dagger} \right) + \text{higher order terms}
$$

$$
\Sigma(x) \in SU(3) \qquad \langle \Sigma(x) \rangle = 1
$$

Global symmetry breaking pattern $SU(3)_L \times SU(3)_R \rightarrow SU(3)_V$

 \rightarrow 8 Goldstone bosons

Gauge an $SU(2)\times U(1)$ subgroup, $\mathbf{8}=\mathbf{3}_0\oplus \mathbf{2}_{\pm 1/2}\oplus \mathbf{1}_0$

$$
D_{\mu}\Sigma = \partial_{\mu}\Sigma - igW_{\mu}^{a}[Q^{a}, \Sigma] - ig'B_{\mu}[Y, \Sigma] + \dots
$$

$$
Q_{a} = \frac{1}{2} \begin{pmatrix} \sigma_{a} \\ & \end{pmatrix} Y = \frac{1}{6} \begin{pmatrix} 1 \\ & -2 \end{pmatrix}
$$

KORK EXTERNE PROVIDE

Skyrme Lagrangian

As in QCD, add the (gauged) Skyrme term

$$
\mathcal{L} = \frac{f^2}{4} \operatorname{Tr} \left(D_{\mu} \Sigma D^{\mu} \Sigma^{\dagger} \right) + \frac{1}{32e^2} \operatorname{Tr} \left(\left[\Sigma^{\dagger} D_{\mu} \Sigma, \Sigma^{\dagger} D_{\nu} \Sigma \right] \right)^2
$$

In the absence of gauge fields, the skyrmion configuration minimising the energy is obtained with a hedgehog ansatz

$$
\Sigma = \exp\left[2i\,F(r)\,\hat{x}_i T_i\right] \qquad T_i \in SU(3)_V \qquad [T_i, T_j] = i\,\epsilon_{ijk}\,T_k
$$

Spherical symmetry:

 $SO(3)$ rotation in space \equiv global transformation $\subset SU(3)_V$

Classical skyrmion solution

Find the function $F(r)$ which minimises the energy

$$
E_0 = 72.9 \frac{f}{e}
$$

$$
\langle r^2 \rangle = \left(\frac{1.06}{fe}\right)^2
$$

Spherical energy distribution

KORK STRAIN A STRAIN A COLL

The effects of gauge fields

 $SU(2) \times U(1)$ gauge fields

- break the global $SU(3)$ symmetry of the model
- • can possibly reduce the classical mass of the skyrmion

KORK EXTERNE PROVIDE

The effects of gauge fields

 $SU(2) \times U(1)$ gauge fields

- break the global $SU(3)$ symmetry of the model
- can possibly reduce the classical mass of the skyrmion

The minimal energy solution is obtained with the Skyrme-Wu-Yang ansatz Brihaye, Tchrakian (1998) Brihaye, Hill, Zachos (2004)

$$
\Sigma = \exp\left[2i\,F(r)\,\hat{x}_i Q_i\right]
$$

$$
W_i^a = \frac{a(r)}{2g r} \epsilon_{iak} \hat{x}_k \qquad W_0^a = 0 \qquad B_\mu = 0
$$

- Spherically symmetric
- Makes use of the $SU(2)_W$ generators only

K ロ ▶ K @ ▶ K 할 > K 할 > 1 할 > 1 이익어

Skyrme-Wu-Yang ansatz and EWSB

Energy functional

$$
E[F,a] = 2\pi \frac{f}{e} \int_{0}^{\infty} dr \left[\frac{e^2}{g^2} \left(2 \left(a' \right)^2 + \frac{a^2 (a+2)^2}{r^2} \right) + \left(r^2 + 2(1+a)^2 \sin^2 F \right) \left(F' \right)^2 + (1+a)^2 \sin^2 F \left(2 + (1+a)^2 \frac{\sin^2 F}{r^2} \right) \right]
$$

K ロ ▶ K @ ▶ K 할 > K 할 > 1 할 > 1 이익어

Skyrme-Wu-Yang ansatz and EWSB

Energy functional

$$
E[F,a] = 2\pi \frac{f}{e} \int_{0}^{\infty} dr \left[\frac{e^2}{g^2} \left(2 \left(a' \right)^2 + \frac{a^2 (a+2)^2}{r^2} \right) + \left(r^2 + 2(1+a)^2 \sin^2 F \right) \left(F' \right)^2 + (1+a)^2 \sin^2 F \left(2 + (1+a)^2 \frac{\sin^2 F}{r^2} \right) \right]
$$

Electroweak symmetry breaking

$$
\langle h \rangle = v \Leftrightarrow \langle \Sigma \rangle = \begin{pmatrix} 1 \\ \cos(v/f) & i \sin(v/f) \\ i \sin(v/f) & \cos(v/f) \end{pmatrix}
$$

K ロ > K @ > K 할 > K 할 > 1 할 : ⊙ Q Q*

Skyrme-Wu-Yang ansatz and EWSB

Energy functional

$$
E[F, a] = 2\pi \frac{f}{e} \int_{0}^{\infty} dr \left[\frac{e^2}{g^2} \left(2 \left(a' \right)^2 + \frac{a^2 (a+2)^2}{r^2} \right) + \frac{\epsilon}{2} a^2 + \mathcal{O} \left(\epsilon^2 \right) \right. \\ \left. + \left(r^2 + 2(1+a)^2 \sin^2 F \right) \left(F' \right)^2 \right. \\ \left. + (1+a)^2 \sin^2 F \left(2 + (1+a)^2 \frac{\sin^2 F}{r^2} \right) \right]
$$

Electroweak symmetry breaking

$$
\langle h \rangle = v \Leftrightarrow \langle \Sigma \rangle = \begin{pmatrix} 1 \\ \cos(v/f) & i \sin(v/f) \\ i \sin(v/f) & \cos(v/f) \end{pmatrix} \qquad \epsilon = \frac{v^2}{f^2}
$$

 \rightarrow preserves spherical symmetry at LO

メロメ メ都 メメ きょくきょ

重し 299

Classical energy of the skyrmion

- E_0 tends to the ungauged solution in the limit $e \to \infty$ (vanishing Skyrme term)
- Still always the lightest solution at the classical level

KORK STRAIN A STRAIN A COLL

Quantisation

The lowest physical states are obtained by quantisation of zero-modes

- **•** translations and boosts
- **•** rotations
- global $SU(2)_W$ transformations
- global $U(1)_Y$ transformation

KORK STRAIN A STRAIN A COLL

Quantisation

The lowest physical states are obtained by quantisation of zero-modes

- translations and boosts
- rotations \rightarrow spin
- global $SU(2)_W$ transformations \rightarrow isospin
- global $U(1)_Y$ transformations

Quantisation

The lowest physical states are obtained by quantisation of zero-modes

- **translations and boosts**
- rotations \rightarrow spin
- global $SU(2)_W$ transformations \rightarrow isospin
- global $U(1)_Y$ transformations

Since both are equivalent, for the lightest states

 $spin = isospin$

The lightest skyrmion state is either

- an electroweak singlet boson
- **a** an electroweak doublet fermion

KORK STRAIN A STRAIN A COLL

Spin statistics of the skyrmion

The low-energy theory is a purely bosonic theory:

How could the skyrmion not be a boson?

Straightforward to compute: Does the action picks up a phase when performing a 2π rotation of the skyrmion?

KORK EXTERNE PROVIDE

Spin statistics of the skyrmion

The low-energy theory is a purely bosonic theory:

How could the skyrmion not be a boson?

Straightforward to compute: Does the action picks up a phase when performing a 2π rotation of the skyrmion?

If the space of all possible field configurations is disconnected, then this is possible the state of the Finkelstein, Rubinstein (1968)

$$
\pi_4(SU(N \ge 3)) = 0 \qquad \Rightarrow \qquad \text{not for QCD}
$$

KORK EXTERNE PROVIDE

Spin statistics of the skyrmion

The low-energy theory is a purely bosonic theory:

How could the skyrmion not be a boson?

Straightforward to compute: Does the action picks up a phase when performing a 2π rotation of the skyrmion?

If the space of all possible field configurations is disconnected, then this is possible the state of the Finkelstein, Rubinstein (1968)

$$
\pi_4(SU(N \ge 3)) = 0 \qquad \Rightarrow \qquad \text{not for QCD}
$$

Answer: the σ -model Lagrangian written so far is incomplete

Anomalies

Anomalies in the UV theory must be matched in the low-energy description by the introduction of a non-local term

KORK STRAIN A BAR DE ROACH

$$
\Gamma = -\frac{i N_c}{240\pi^2} \int_{\mathcal{M}_5} d^5 x \,\epsilon^{\mu\nu\rho\sigma\tau} \,\text{Tr} \left(\Sigma^{\dagger} \partial_{\mu} \Sigma \,\partial_{\nu} \Sigma^{\dagger} \partial_{\rho} \Sigma \,\partial_{\sigma} \Sigma^{\dagger} \partial_{\tau} \Sigma \right)
$$

Wess, Zumino (1971) Witten (1983)

 $(N_c \in \mathbb{Z})$ + 4D terms required by gauge invariance

Anomalies

Anomalies in the UV theory must be matched in the low-energy description by the introduction of a non-local term

KORK STRAIN A BAR DE ROACH

$$
\Gamma = -\frac{i N_c}{240\pi^2} \int_{\mathcal{M}_5} d^5 x \,\epsilon^{\mu\nu\rho\sigma\tau} \,\text{Tr} \left(\Sigma^{\dagger} \partial_{\mu} \Sigma \,\partial_{\nu} \Sigma^{\dagger} \partial_{\rho} \Sigma \,\partial_{\sigma} \Sigma^{\dagger} \partial_{\tau} \Sigma \right)
$$

 $(N_c \in \mathbb{Z})$ + 4D terms required by gauge invariance

Wess, Zumino (1971) Witten (1983)

- Induces anomalous pion decay in QCD
- **•** (In)famous in LH for breaking T-parity C. .T. Hill, R. J. Hill (2007)

Anomalies

Anomalies in the UV theory must be matched in the low-energy description by the introduction of a non-local term

KORK EXTERNE PROVIDE

$$
\Gamma = -\frac{i N_c}{240\pi^2} \int_{\mathcal{M}_5} d^5 x \,\epsilon^{\mu\nu\rho\sigma\tau} \,\text{Tr} \left(\Sigma^{\dagger} \partial_{\mu} \Sigma \,\partial_{\nu} \Sigma^{\dagger} \partial_{\rho} \Sigma \,\partial_{\sigma} \Sigma^{\dagger} \partial_{\tau} \Sigma \right)
$$

 $(N_c \in \mathbb{Z})$ + 4D terms required by gauge invariance

Wess, Zumino (1971) Witten (1983)

- Induces anomalous pion decay in QCD
- **•** (In)famous in LH for breaking T-parity C. .T. Hill, R. J. Hill (2007)
- **•** Fixes the spin statistics of the skyrmion

 N_c even ⇔ boson N_c odd ⇔ fermion $(N_c = 3$ in QCD, hence the nucleons are fermions)

KORK EXTERNE PROVIDE

Summary: the skyrmion in composite Higgs models

In any composite Higgs model, the electroweak gauge group must be preserved by the global symmetry breaking at scale f

Since at the energy scale of the skyrmion $M \gg f$, the $SU(2)_W$ symmetry is approximately preserved, the lightest skyrmion is always obtained from a Skyrme-Wu-Yang ansatz along the $SU(2)_W$ group.

Independently of the model, if skyrmions are present, the lightest state is either

- an electroweak singlet boson
- **a** an electroweak doublet fermion

depending on the coefficient N_c of the WZW term

KORK STRAIN A STRAIN A COLL

WZW term and hypercharge

The Skyrme-Wu-Yang skyrmion configuration is built out of $SU(2)_W$ generators

 \Rightarrow no charge under $U(1)_Y$ from local terms

$$
\Sigma_0 = \begin{pmatrix} \exp[iF(r)\hat{x}_i\sigma_i] \\ 1 \end{pmatrix} \qquad Y = \frac{1}{6} \begin{pmatrix} 1 \\ 1 \\ -2 \end{pmatrix}
$$

$$
\Rightarrow \qquad \delta_Y \Sigma \propto [Y, \Sigma_0] = 0
$$

K ロ ▶ K @ ▶ K 할 > K 할 > 1 할 > 1 이익어

WZW term and hypercharge

The Skyrme-Wu-Yang skyrmion configuration is built out of $SU(2)_W$ generators

 \Rightarrow no charge under $U(1)_Y$ from local terms

$$
\Sigma_0 = \begin{pmatrix} \exp[iF(r)\hat{x}_i\sigma_i] \\ 1 \end{pmatrix} \qquad Y = \frac{1}{6} \begin{pmatrix} 1 \\ 1 \\ -2 \end{pmatrix}
$$

$$
\Rightarrow \qquad \delta_Y \Sigma \propto [Y, \Sigma_0] = 0
$$

But there is a contribution from the non-local WZW term

$$
Y(\Sigma_0) = \frac{1}{6} N_c
$$

KORK EXTERNE PROVIDE

Electric charge of the skyrmion

In our toy model:

• if N_c is even

$$
q = \frac{N_c}{6}
$$

• if N_c is odd

$$
q = \frac{N_c \pm 3}{6}
$$

Two possibilities for having $q = 0$

- $N_c = 0 \iff$ anomaly free UV completion (if any?)
- $N_c = 3$ as in QCD

In any other case the lightest skyrmion state is electrically charged!

K ロ ▶ K @ ▶ K 할 > K 할 > 1 할 > 1 이익어

A way out? Extending the symmetry

Generalise the toy model to $SU(N)$, $N > 3$

$$
Q_a = \frac{1}{2} \begin{pmatrix} \sigma_a & & \\ & & \end{pmatrix} \qquad Y = \begin{pmatrix} y_0 1 & & \\ & y_0 - \frac{1}{2} & \\ & & \ddots \end{pmatrix}
$$

$$
q = y_0 N_c \begin{bmatrix} \pm \frac{1}{2} \end{bmatrix}
$$

KORK STRAIN A STRAIN A COLL

A way out? Extending the symmetry

Generalise the toy model to $SU(N)$, $N > 3$

$$
Q_a = \frac{1}{2} \begin{pmatrix} \sigma_a & & \\ & & \end{pmatrix} \qquad Y = \begin{pmatrix} y_0 1 & & \\ & y_0 - \frac{1}{2} & \\ & & \ddots \end{pmatrix}
$$

$$
q = y_0 N_c \left[\pm \frac{1}{2} \right]
$$

Neutral skyrmion requires

•
$$
y_0 = 0
$$
 for even N_c $\implies Q_{em} = \text{diag}(\frac{1}{2}, -\frac{1}{2}, -\frac{1}{2}, \ldots)$

$$
\bullet \ \ y_{0}=\pm 1/\left(2N_{c}\right) \text{ for odd }N_{c}
$$

In terms of fermions

The Higgs fields are fermion- antifermion bound states

Skyrmions are bound states of N_c fermions

イロト イ押 トイヨト イヨト

÷,

 299

In terms of fermions

The Higgs fields are fermion- antifermion bound states

 h^+ h^0

$$
y_0 + \frac{1}{2}
$$
 $y_0 - \frac{1}{2}$ $y_0 - \frac{1}{2}$

Skyrmions are bound states of N_c fermions

イロト イ押 トイヨト イヨト

÷,

 2990

In terms of fermions

The Higgs fields are fermion- antifermion bound states

 h^+ $^+$ h h^0

$$
y_0 + \frac{1}{2}
$$
 $y_0 - \frac{1}{2}$ $y_0 - \frac{1}{2}$

Skyrmions are bound states of N_c fermions

 $q = y_0 N_c$ for N_c odd $q = y_0 N_c \pm \frac{1}{2}$ $\frac{1}{2}$ for N_c even

KORK STRAIN A BAR DE ROACH

KORK EXTERNE PROVIDE

$\overline{\mathsf{SO(N)}}\times\overline{\mathsf{SO(N)}}\mathbin{/}\mathsf{SO(N)}$

The lightest skyrmion is also obtained with the Skyrme-Wu-Yang ansatz (using a real representation for $SU(2)_W$)

But there is no WZW term and the underlying theory must be free of chiral anomalies

- the skyrmion is a boson
- it has zero hypercharge

 \implies electrically neutral

KORK EXTERNE PROVIDE

$SO(N) \times SO(N) / SO(N)$

The lightest skyrmion is also obtained with the Skyrme-Wu-Yang ansatz (using a real representation for $SU(2)_W$)

But there is no WZW term and the underlying theory must be free of chiral anomalies

- the skyrmion is a boson
- it has zero hypercharge

 \implies electrically neutral

Open questions: What is the 4D UV completion? What is the microscopic nature of the skyrmion? Can it be dark matter?

$SU(N) / SO(N)$

The Goldstone field $\Sigma(x)$ is taken in the two-index symmetric representation of $SU(N)$

KORK EXTERNE PROVIDE

 \rightarrow the vev $\langle \Sigma \rangle = 1$ breaks the symmetry to $SO(N)$

$SU(N) / SO(N)$

The Goldstone field $\Sigma(x)$ is taken in the two-index symmetric representation of $SU(N)$

 \rightarrow the vev $\langle \Sigma \rangle = 1$ breaks the symmetry to $SO(N)$

 $SU(2)_W$ generators are taken in a 4-dim. real representation in the unbroken subgroup $SO(N)$

KORK EXTERNE PROVIDE

$SU(N) / SO(N)$

The Goldstone field $\Sigma(x)$ is taken in the two-index symmetric representation of $SU(N)$

 \rightarrow the vev $\langle \Sigma \rangle = 1$ breaks the symmetry to $SO(N)$

 $SU(2)_W$ generators are taken in a 4-dim. real representation in the unbroken subgroup $SO(N)$

KORK EXTERNE PROVIDE

There is a unique implementation of the hypercharge that provides a Higgs doublet

KORKAR KERKER DRAM

SU(N) / SO(N) : classical skyrmion configuration

The skyrmion is constructed using the Cartan embedding of a $SU(N)$ hedgehog, written in terms of broken generators

> \implies the skyrmion can not live along the $SU(2)_W$ gauged subgroup

No Skyrme-Wu-Yang ansatz, but the lightest skyrmion still makes use of the $SU(2)$ gauge fields to lower its mass (while remaining spherically symmetric) MG, von Manteuffel, Schwaller, Wyler (2010)

KORKAR KERKER E VOOR

$SU(N)$ / $SO(N)$: classical skyrmion configuration

The skyrmion is constructed using the Cartan embedding of a $SU(N)$ hedgehog, written in terms of broken generators

> \implies the skyrmion can not live along the $SU(2)_W$ gauged subgroup

No Skyrme-Wu-Yang ansatz, but the lightest skyrmion still makes use of the $SU(2)$ gauge fields to lower its mass (while remaining spherically symmetric) MG, von Manteuffel, Schwaller, Wyler (2010)

Also: due to the group structure, the coefficient N_c of the Wess-Zumino-Witten term can take half-integer values

KORK EXTERNE PROVIDE

$SU(N)$ / $SO(N)$: electric charge of the skyrmion

There are two skyrmion implementations Σ_+ and Σ_- , identical in mass, size and charge under $SU(2)_W$

Only differ by the hypercharge

$$
Y(\Sigma_+) = N_c \qquad Y(\Sigma_-) = -N_c
$$

KORK EXTERNE PROVIDE

$SU(N)$ / $SO(N)$: electric charge of the skyrmion

There are two skyrmion implementations Σ_+ and Σ_- , identical in mass, size and charge under $SU(2)_W$

Only differ by the hypercharge

$$
Y(\Sigma_+) = N_c \qquad Y(\Sigma_-) = -N_c
$$

 \Longrightarrow (half-)integer electric charge $q=\pm N_c \quad (\pm \frac{1}{2})$ $\frac{1}{2}$ for fermions)

KORKAR KERKER E VOOR

$SU(N)$ / $SO(N)$: electric charge of the skyrmion

There are two skyrmion implementations Σ_+ and Σ_- , identical in mass, size and charge under $SU(2)_W$

Only differ by the hypercharge

$$
Y(\Sigma_+) = N_c \qquad Y(\Sigma_-) = -N_c
$$

 \Longrightarrow (half-)integer electric charge $q=\pm N_c \quad (\pm \frac{1}{2})$ $\frac{1}{2}$ for fermions)

All purely fermionic UV completions have $N_c \geq 2$ and cannot have neutral skyrmions!

Weakly-coupled UV completions exist Csaki, Heinonen, Perelstein, Spethmann (2008) but the nature of the skyrmion is not clear in that case

- Electroweak precision tests require custodial symmetry
- No collective Higgs quartic in models with gauge singlets

Schmaltz, Thaler (2009)**KORK STRAIN A BAR DE ROACH**

- Electroweak precision tests require custodial symmetry
- No collective Higgs quartic in models with gauge singlets

Schmaltz, Thaler (2009)**KORK STRAIN A BAR DE ROACH**

- Electroweak precision tests require custodial symmetry
- No collective Higgs quartic in models with gauge singlets

Schmaltz, Thaler (2009)

 2990 Germany Co

イロト イ押 トイヨト イヨト

- Electroweak precision tests require custodial symmetry
- No collective Higgs quartic in models with gauge singlets

Schmaltz, Thaler (2009)

 2990 Germany Co

イロト イ押 トイヨト イヨト

- Electroweak precision tests require custodial symmetry
- No collective Higgs quartic in models with gauge singlets

Schmaltz, Thaler (2009)

 2990 Germany Co

イロト イ押 トイヨト イヨト

Conclusions

- Skyrmions appear in many models of strongly-coupled electroweak physics, not only in composite Higgs / little Higgs models B. Campbell, J. Ellis, K. Olive (2012) J. Ellis, M. Karliner, M. Praszalowicz (2012)
- Large mass but small cross-section could make them naturally abundant in the universe
- The lightest skyrmion states prefer to be charged under the electroweak gauge group For composite Higgs models, it can be complicated (or impossible) to have the correct charge assignments both for the Goldstone bosons (Higgs doublet) and for the skyrmions
- • Need for a better understanding of the strong dynamics beyond the effective approach**KORKAR KERKER EL POLO**