QCD effects in precision analysis of the process $B \to K^* l^+ l^-$

Alexei A. Pivovarov

Uni-Siegen, Siegen

Theory Seminar, JGU, Mainz November 27, 2012

K ロ K K @ K K 영화 K 영화 시 결

 299

- \blacktriangleright Introduction
- \triangleright B-physics experiment
- \blacktriangleright Theory tools:
	- ► $\mathcal{H}_{\Delta B=1}^{\text{eff}}$ and pQCD at large scales

★ ロチ → 御 ▶ → 평 ▶ → 평 ▶ │ 평 │

 299

- \blacktriangleright Low scale matrix elements
- ► Charm-quark loop in $B \to K^* \mu^+ \mu^-$
- \triangleright OPE on light cone and sum rules
- ► Summary

LHC data agree with SM predictions well

Primary goal – search (and discovery) of Higgs boson and/or clarification of the mechanism of electroweak symmetry breaking in the standard model

Hope to detect a type of NP beyond SM as well

As for SM, the gauge sector is transparent: observed fermionic quanta – quarks and leptons with interaction guided by gauge invariance

Higgs sector and flavor structure

– Yukawa couplings, CKM scheme, CP violation – no clear principle

K ロ ▶ K 레 ▶ K 호 ▶ K 호 ▶ → 호 → 10 Q Q

Flavor sector is certainly a place for NP

Extensive experimental study of B -physics: CDF, BELLE, BaBar with good results

LHCb – dedicated detector for B -decay

Radiative decays $B\to X_s\gamma$, $B\to K^*\gamma$ ($q^2=0$)

Rare semileptonic $B \to K \ell^+ \ell^ (q^2 \neq 0)$

Rare $B \to K^*(K\pi)\ell^+\ell^-$ with four particle final state: resonance approximation $\mathsf{M}_{\mathsf{K}\pi}^2=\mathsf{M}_{\mathsf{K}^*}^2$

Sophisticated angular analysis is possible: large statistics

K ロ ▶ K @ ▶ K 할 ▶ K 할 ▶ 이 할 → 900

Angular analysis

Differential rate for $B \to K^*(K\pi)\mu^+\mu^-$

$$
\frac{1}{\Gamma} \frac{d^4 \Gamma}{d \cos \theta_l d \cos \theta_K d\phi dq^2} = \frac{9}{16\pi}
$$
\n
$$
\left(F_L \cos^2 \theta_K + \frac{3}{4} (1 - F_L)(1 - \cos^2 \theta_K) + F_L \cos^2 \theta_K (2 \cos^2 \theta_l - 1) + \frac{1}{4} (1 - F_L)(1 - \cos^2 \theta_K)(2 \cos^2 \theta_l - 1) + \frac{3}{4} (1 - \cos^2 \theta_K)(1 - \cos^2 \theta_l) \cos 2\phi + \frac{3}{4} A_{FB} (1 - \cos^2 \theta_K) \cos \theta_l + \frac{3}{4} (1 - \cos^2 \theta_K)(1 - \cos^2 \theta_l) \sin 2\phi\right)
$$

LHCb arXiv:1112.3515v3 [hep-ex]

K ロ K K @ K K 동 K K 동 K E 299

FCNC - loop mediated processes

Loop diagram for $b \rightarrow s \ell^+ \ell^$ a SM skeleton for $B \to K^* \ell^+ \ell^-$

The data constrain parameters of SM and have sensitivity to new physics

Upgrades: superB, BelleII, super LHCb...

Presence of loops strongly suppresses rates in SM but provides sensitivity to NP that requires high precision

Theory description

Problem of precison check: QCD effects The strong coupling constant is large and one expects corrections... At the parton level (quark diagram) the LO contribution is

Theory description

The NLO (first iteration) contributions are not small

メロト メタト メミト メミト

 299

一度

Theory description

Even NNLO (second iteration) are not negligible

K ロ K K 御 K K 君 K K 君 K

 299

一目

And even more

QCD variables are quarks-qluons $\{q, g\}$ while experimental modes are hadrons $\overline{B},\overline{K},\overline{K^*},\pi...$ Therefore,

Theory has no tool to built hadrons from quarks...

K ロ ▶ (K @) (K @) (@)

 $2Q$

Example of muon MM anomaly g-2. Same logics of loop sensitivity to NP

Muon case is simpler as it has only leptonic external states.

K ロ ▶ (K @) | K 글) | K 글)

 299

Potentially new particles run in the loops

Theory tool - separation of scales

Scale separation and Effective Theories

EW scale of SM is $v = 250$ GeV or in practice M_w, M_z, m_t For $\Delta B = 1$ processes at m_b with $\mu \sim E \sim m_b$ OPE allows for control of $\alpha_s^n ln(M_W/m_b)^k$ within pQCD ("integrating out heavy particles")

$$
H_{\text{eff}} = -\frac{4G_F}{\sqrt{2}} V_{tb} V_{ts}^* \sum_{i=1}^{10} C_i(\mu) O_i(\mu)
$$

 $C_i(\alpha_s, \mu)$ – short-distance pQCD coeffs, $O_i(\mu)$ – composite local operators This factorization is of pure PT origin and under control through PT series in $\alpha_s(\mu)$ for $C_i(\alpha_s(\mu))$

Operators should be at scales $m_b \sim 5 \text{ GeV}$ RG runs down coefficients from scale $\mu \sim M_t, M_Z, M_W$

 $C_i(m_b) = U_{ii}(M_W, m_b, \alpha_s(m_b < \mu < M_W))C_i(M_W)$

Known two iterations for initial values (NNLO)

$$
C_i(M_W) = C_i^{LO} + \alpha_s(\mu)C_i^{NLO} + \alpha_s(\mu)^2C_i^{NNLO},
$$

give few % accuracy $(\alpha_s(M_z) = 0.12)$. Transition matrix

$$
U(M_W, m_b, \alpha_s) = U^{LO} + \frac{\alpha_s(\mu)}{\pi}U^{NLO} + \left(\frac{\alpha_s(\mu)}{\pi}\right)^2 U^{NNLO}
$$

depends on mixing γ and running β along the trajectory $M_w > \mu > m_b$ and known with two iterations. With $\alpha_s(m_b) = 0.20$ the accuracy of $C_i(m_b)$ is at the level of percents.

SM amplitudes as ME of effective operators

At LO in G_F the SM amplitudes reduce to

 $Amp(B \to K^* \ell^+ \ell^-) = -\langle K^* \ell^+ \ell^- \mid H_{\mathsf{eff}} \mid B \rangle + \mathcal{O}(\text{dim } 8)$

$$
\sim C_i(\mu=m_b)\langle K^* \ell^+ \ell^- \mid O_i(\mu) \mid B \rangle + \mathcal{O}\left(\frac{m_b^2}{M_W^2, m_t^2}\right)
$$

 $C_i(\mu)$ are so precise that the next interation can require em corr and also terms of order $m_b^2/M_W^2\sim (1/20)^2$. Top quark mass uncertainty becomes important. This is a triumph of pQCD at large scales. The rest is hadronic matrix elements of $O_i(m_b)$. And troubles begin.

★ ロチ → 御 ▶ → 君 ▶ → 君 ▶ │ 君

 299

Operators giving leading contributions

$$
ME_i = \langle K^* \ell^+ \ell^- \mid O_i(m_b) \mid B \rangle
$$

contain no large logs but depend on IR structure of QCD – hadrons as bound states **Operators**

$$
O_9=\frac{\alpha_{\text{\it em}}}{4\pi}\left(\bar{s}_L\gamma_\rho b_L\right)\left(\bar{\ell}\gamma^\rho I\right),\qquad O_{10}=\frac{\alpha_{\text{\it em}}}{4\pi}\left(\bar{s}_L\gamma_\rho b_L\right)\left(\bar{I}\gamma^\rho\gamma_5 I\right)
$$

allow for tree level computation through

 $\langle K^* \ell^+ \ell^- | O_9(\mu) | B \rangle = \langle K^* | J_h(\mu) | B \rangle \langle \ell^+ \ell^- | J_l(\mu) | 0 \rangle$

K ロ ▶ K @ ▶ K 할 ▶ K 할 ▶ 이 할 → 90 Q ^

Completely factorizable

Relevant operators and corrections

Contributions due to $O_{9,10}$ are dominant Expressible through hadronic form factors of local operators

Still there are interactions at low energies that violate this approximation. This is em correction...K ロ K K @ K K ミ K K ミ K 一目

 $2Q$

Relevant operators

Operator

$$
O_{7\gamma}=-\frac{e}{16\pi^2}\bar{s}\sigma_{\mu\nu}(m_sL+m_bR)bF^{\mu\nu}
$$

requires low energy em vertex to allow for the process

メロト メタト メミト メミト

 299

一目

and also reduces to hadronic form factors.

Contributions of loop operators

Contribution of $O₉$ is parametrized

 $\langle K^*(\pmb{\rho})|\bar{\textbf{s}}_L\gamma_\rho\pmb{b}_L|\pmb{\beta}(\pmb{\rho}+\pmb{q})\rangle=\epsilon_{\rho\alpha\beta\gamma}\epsilon^{*\alpha}\pmb{q}^\beta\pmb{\rho}^\gamma\frac{V(\pmb{q}^2)}{m_{\mathsf{P}}+m_{\mathsf{P}}},$ $m_B + m_{K^*}$

$$
-i\epsilon_{\rho}^*(m_{B}+m_{K^*})A_1(q^2)+i(2p+q)_{\rho}(\epsilon^*q)\frac{A_2(q^2)}{m_{B}+m_{K^*}}
$$

Form factors $A_1(q^2),\, A_2(q^2),\, V(q^2)$ require nonPT methods to be used At present the main tool is LCSR with typical accuracy of order of 10%

There appear still more complicated objects

Charm loops picture

Tree-level four-quark charm operators O_1 and O_2

 $O_1 = (\bar{s}_L \gamma_\rho c_L)(\bar{c}_L \gamma^\rho b_L)$, $O_2 = (\bar{s}_L^0)$ $\left(\bar{c}^i_{L}\gamma^\rho\bm{b}^j_{L}\right)\left(\bar{c}^i_{L}\gamma^\rho\bm{b}^j_{L}\right)$ L $\overline{}$

have large Wilson coeff and important. They lead to non-local low energy contributions of the form

There are also pinquin operators that generate the same problem but their coefficients are smaller.

- This is a generic QCD problem.
- Two kinematical regions:

large recoil or small q^2 (1 $<$ q^2 $<$ 6, basically q^2 $<$ 4 m^2_c – we neglect Cabibbo suppressed u -contributions)

QCDF is used – kaon is energetic with scaling $E_K \sim m_b$ in B-meson rest frame. Expansion in $1/m_b$ and $1/E_K$ is used (HQET+SCET techniques).

Expansions are non local, require LC DA's of kaon and B-meson, the expansion parameter Λ_{OCD}/E_K is not small, problems with higher orders in Λ_{QCD}/E_K ...

Advantage – form factor symmetries and reduction of the number of independent form factors at LO

Second region: Low recoil - large q^2

Applicability range ${\mathit M}_{\psi_n}^2 < q^2 < m_b^2 = 23~{\rm GeV}$ It allows for a local OPE over 1/ $m_b,1/\sqrt{q^2}$ in <code>HQET</code> framework.

Problems: expansion is in timelike region ("on the cut") and close to resonance region, in fact expansion is over $1/(m_b^2 - 4m_c^2)$ that decreases the region of applicability, efficient for penguin with light quarks...

Seems, low recoil region is now theoretically cleaner

K ロ ▶ K @ ▶ K 할 ▶ K 할 ▶ 이 할 → 90 Q ^

Charm-loops amplitude

An estimate of a new effect at low q^2 region Contribution to the $A(B \to K^* \ell^+ \ell^-)$ reads

$$
\mathcal{A}mp^{O_{1,2}}=-(4\pi\alpha_{em}Q_c)\frac{4G_F}{\sqrt{2}}V_{tb}V_{ts}^*\frac{\bar{\ell}\gamma^{\mu}\ell}{q^2}\mathcal{H}_{\mu}^{(B\to K^*)}(p,q)
$$

with $Q_c = 2/3$ and

$$
\mathcal{H}_{\mu}^{(B\to K^*)}(p,q)=i\!\!\int\!\!dx\;e^{iqx}\times
$$

 $\langle K^*(\rho)|\,T\bar c\gamma_\mu c(x)\Bigl[C_1O_1(0)+C_2O_2(0)\Bigr]|B(\rho+q)\rangle$

K ロ ▶ (K @) X (글) (K 글) (글)

 299

Charm-loops amplitude essence

Key quantity ($O_{12} \sim (\bar{S}c)(\bar{c}b)$)

 $T_{\mu} = TO_{1,2}(0)J_{\mu}(x) = T\bar{c}\gamma_{\mu}c(x)O_{1,2}(0)$

is a nonlocal amplitude that is expanded on LC

 $TO(0)J_u(x) = \bar{S} \Gamma b \otimes C(x) + \bar{S} G b \otimes C_G(x) + ...$

At LO in α_s and LO operator, the coefficient C is given by the two-point product

 $\mathbf{C} \rightarrow (c^i(x) \bar{c}^j(x)) J_\mu(0)$

K ロ K K @ K K X B K X B K Y B X Y Q Q Q

It can be computed in PT at $q^2 \ll 4m_c^2$ that leads to fact approximation (LO of QCDF)

Thus at LO the amplitude

$$
\mathcal{H}_\mu^{(B\to\mathcal{K}^*)}(p,q)|_{\mathrm{LO}}=\left(\frac{C_1}{3}+C_2\right)\langle\mathcal{K}^*(p)|\mathcal{O}_\mu(q)|\mathcal{B}(p+q)\rangle
$$

where both $O_{1,2}$ contribute and the local operator

$$
\mathcal{O}_\mu(\boldsymbol{q})=(q_\mu q_\rho-q^2g_{\mu\rho})\frac{9}{32\pi^2}g(m_c^2,q^2)\bar{\mathbf{s}}_L\gamma^\rho b_L
$$

K ロ K K @ K K 영화 K 영화 시 결

 299

reduces ME to $B \to K^*$ form factors.

Factorized charm loop

The LO charm-loop coefficient function is given by its imaginary part

K ロ ▶ (K @) X X 글 ▶ (K 글)

つへへ

目

$$
\frac{1}{\pi} \text{Im}_s g(m_c^2, s) = \frac{4}{9} \sqrt{1 - \frac{4m_c^2}{s}} (1 + \frac{2m_c^2}{s}) \Theta(s - 4m_c^2)
$$

It is "short-distance" charm-loop effect.

A model generalization

One can generalize the contribution of charm loop using physical representation through dispersion relation in the variable *q*²

$$
\frac{1}{\pi}\operatorname{Im}_s g(m_c^2, s) = \sum_i f_i^2 \delta(s - M_{\psi_i}^2) + \text{cont}(DD)
$$

This expression leads to the same behavior at low q^2 but can also be continued to large q^2 giving a model of analytic continuation.

Corrections to factorization (LO) are both PT and nonPT.

Even NLO PT corrections violate factorization.

I discuss the nonPT soft gluon corrections

A.Khodjamirian,Th.Mannel,AAP,Y.-M.Wang, JHEP09(2010)089

Here $B \to K^*$ matrix element contains soft-gluon emission from the charm loop.

NonFactorized charm loop

The c-quark loop with the emitted gluon generates the nonlocal effective operator O_μ One casts the soft-gluon emission part to a form

 $\mathcal{H}^{(\mathcal{B}\rightarrow\mathcal{K}^*)}_{\mu}(\rho,q)|_{\textit{nonfacet}}=2C_1\langle\mathcal{K}^*(\rho)| \widetilde{\mathcal{O}}_{\mu}(q)|\mathcal{B}(\rho+q)\rangle$

where $\widetilde{\mathcal{O}}_n(q)$ is a convolution of the coefficient function with the nonlocal operator

$$
\widetilde{\mathcal{O}}_{\mu}(q)=\int d\omega\, I_{\mu\rho\alpha\beta}(q,\omega)\bar{\textbf{s}}_{L}\gamma^{\rho}\delta[\omega-\frac{(in_{+}\mathcal{D})}{2}]\widetilde{\textbf{G}}_{\alpha\beta}b_{L}
$$

This matrix element resembles a nonforward distribution with different initial and final hadrons.

K ロ K K @ K K X B K K B K (B K)

 299

Spectral density of coeff function

The coeff function $I_{\mu\rho\alpha\beta}(q,\omega)$ is given by its spectral density

$$
\frac{1}{\pi} \text{Im}\, I_{\mu\rho\alpha\beta}(q,\omega) = \frac{m_c^2 \Theta(\widetilde{q}^2-4m_c^2)}{4\pi^2\widetilde{q}^2\sqrt{\widetilde{q}^2(\widetilde{q}^2-4m_c^2)}} \\[10pt] \int_0^1 du \Big\{ \bar{u} \widetilde{q}_{\mu} \widetilde{q}_{\alpha} g_{\rho\beta} + u \widetilde{q}_{\rho} \widetilde{q}_{\alpha} g_{\mu\beta} - \Big[u + \frac{(\bar{u}-u)\widetilde{q}^2}{4m_c^2} \Big] \widetilde{q}^2 g_{\mu\alpha} g_{\rho\beta} \Big\}
$$

K ロ ▶ K @ ▶ K 할 ▶ K 할 ▶ 이 할 → 900

with $\widetilde{\mathsf{q}} = \mathsf{q} - \mathsf{u} \omega \mathsf{n}_-$, so that $\widetilde{\mathsf{q}}^2 \simeq \mathsf{q}^2 - 2 \mathsf{u} \omega \mathsf{m}_b$

Non-factorizable amplitude reads

 $\mathcal{H}^{(\mathcal{B}\rightarrow\mathcal{K}^*)}_{\mu}(\pmb{\rho},\pmb{q})=(\pmb{C}_1/3+\pmb{C}_2)\langle \pmb{K}^{*}(\pmb{\rho})|\mathcal{O}_{\mu}(\pmb{q})|\pmb{B}(\pmb{\rho}+\pmb{q})\rangle$ $+2\mathcal{C}_1\langle\mathcal{K}^*(\pmb{\rho})|\widetilde{\mathcal{O}}_{\mu}(\pmb{q})|\pmb{\beta}(\pmb{\rho}+\pmb{q})\rangle=\epsilon_{\mu\alpha\beta\gamma}\epsilon^{*\alpha}\pmb{q}^{\beta}\pmb{p}^{\gamma}\pmb{H}_1(\pmb{q^2})$ $+i[(m_B^2 - m_{K^*}^2) \epsilon_\mu^* - (\epsilon^* \bm{q}) (2 \bm{p} + \bm{q})_\mu] H_2(\bm{q^2})$ $+i(\epsilon^*q)[q_\mu-\frac{q^2}{m_\pi^2-1}]$ $m_B^2 - m_{K^*}^2$ $(2p+q)_{\mu}]H_3(q^2)$

and $\mathcal{H}_i(q^2)=(C_1/3+C_2)V_i(q^2)+2C_1\tilde{V}_i(q^2)$ with $\tilde{V}(q^2)$ being soft-gluon amplitude. Numerically, $C_1 = 1.12$, $C_2 = -0.27$ that suppresses (enhances) $V(q^2)$ ($\tilde{V}(q^2)$)

K ロ K K @ K K X B K X B K Y B X Y Q Q Q

LC sum rules

We compute soft-gluon emission amplitude \tilde{V}_i using LCSR with the B -meson DA's

Take correlation function

$$
\mathcal{F}_{\nu\mu}(p,q)=i\!\int d\!y e^{ip\cdot y}\langle 0|\mathcal{T}j^{\mathcal{K}^*}_{\nu}(y)\widetilde{\mathcal{O}}_{\mu}(q)|B(p+q)\rangle
$$

with $j_\nu^{\mathcal{K}^*} = \bar{d}\gamma_\nu$ s and extract a residue

$$
\mathcal{F}_{\nu\mu}(\pmb{\rho},\pmb{q})=\frac{f_{\pmb{K}^*\epsilon_{\nu}}\langle \pmb{K}^*(\pmb{\rho})|\widetilde{\mathcal{O}}_{\mu}(\pmb{q})|\pmb{\beta}(\pmb{\rho}+\pmb{q})\rangle}{m_{\pmb{K}^*}^2-\pmb{\rho}^2}+\int_{s_{\pmb{h}}}^\infty \frac{d\pmb{s}\rho_{\nu\mu}(\pmb{s},\pmb{q}^2)}{\pmb{s}-\pmb{\rho}^2}
$$

where f_{K^*} is the K^* residue into the current and higher mass states are represented by the integral from s_h

In theory the correlator is computed using B -meson DA with independent components Ψ_A , Ψ_V , X_A , Y_A

$$
\langle 0|\bar{d}_{\alpha}(y)\delta[\omega-\frac{(in_{+}\mathcal{D})}{2}]G_{\sigma\tau}(0)b_{\beta}(0)|\bar{B}(v)\rangle
$$

=
$$
\frac{f_{B}m_{B}}{2}\int d\lambda e^{-i\lambda yv}\left[(1+\sqrt{y})\left\{ (v_{\sigma}\gamma_{\tau}-v_{\tau}\gamma_{\sigma})[\Psi_{A}-\Psi_{V}]\right.\right.
$$

$$
-i\sigma_{\sigma\tau}\Psi_{V}-\frac{y_{\sigma}v_{\tau}-y_{\tau}v_{\sigma}}{v\cdot y}\chi_{A}+\frac{y_{\sigma}\gamma_{\tau}-y_{\tau}\gamma_{\sigma}}{v\cdot y}\gamma_{A}\right\}\gamma_{5}\right]_{\beta\alpha}
$$

★ ロチ → 御 ▶ → 君 ▶ → 君 ▶ │ 君

 299

where $f_{\rm B}$ is the B-meson decay constant

Model DA for B-meson

$$
\Psi_A(\lambda, \omega) = \Psi_V(\lambda, \omega) = \frac{\lambda_E^2}{6\omega_0^4} \omega^2 e^{-(\lambda + \omega)/\omega_0}
$$

$$
X_A(\lambda, \omega) = \frac{\lambda_E^2}{6\omega_0^4} \omega (2\lambda - \omega) e^{-(\lambda + \omega)/\omega_0}
$$

$$
Y_A(\lambda, \omega) = -\frac{\lambda_E^2}{24\omega_0^4} \omega (7\omega_0 - 13\lambda + 3\omega) e^{-(\lambda + \omega)/\omega_0}
$$

Here $\omega_0 = 1/\lambda_B$ of the *B*-meson two-particle DA ϕ_+^B

Normalization of the three-particle DA's is $\lambda_{E}^{2}=3/2\lambda_{B}^{2}$

★ ロチ → 御 ▶ → 평 ▶ → 평 ▶ │ 평 │

 299

Results for C_9 : $O_9 =$ sbll

$$
\Delta C_9^{\bar{c}c,M_i}=(C_1+3C_2)g(m_c,q)+2C_1\tilde{g}^{\bar{c}c,M_i}
$$

with
\n
$$
\tilde{g}^{\bar{c}c,M_1}(q^2) = -\frac{(m_B + m_{K^*})}{q^2} \frac{\tilde{V}_1(q^2)}{V^{BK^*}(q^2)}
$$
\n
$$
\tilde{g}^{\bar{c}c,M_2}(q^2) = \frac{(m_B - m_{K^*})}{q^2} \frac{\tilde{V}_2(q^2)}{A_1^{BK^*}(q^2)}
$$
\n
$$
\tilde{g}^{\bar{c}c,M_3}(q^2) = \frac{m_B + m_{K^*}}{q^2} \frac{\tilde{V}_2(q^2)}{A_2^{BK^*}(q^2)} + \frac{1}{m_B - m_{K^*}} \frac{\tilde{V}_3(q^2)}{A_2^{BK^*}(q^2)}
$$
\n
$$
C_1 = 1.12, C_2 = -0.27 \text{ that makes } C_1 + 3C_2 = 0.31
$$

 $C_9 = 4.2$

K ロ ▶ K 레 ▶ K 회 ▶ K 회 ▶ X 회 ★ 회 ★ 회 및 ★ 게 이 Q Q ←

Results for K ∗

K ロ ▶ | K 御 ▶ | K 重 ▶ | K 造 つへへ |重→

おうす 重 おうす

(□) (う)

一目

|重→

つへへ

total – solid, soft-gluon – dashed factorizable – dash-dotted

 $q_0^2 = 2.9 \pm 0.3$ while without soft-gluon $q_0^2 = 3.2$

Forward-backward asymmetry for $\bar{B}_0 \to \bar{K^*} \mu^+ \mu^-$ decay with charm-loop effect (solid), without this effect (dashed).

c-quark operators come with large Wilson coeffs. The accuracy of their ME should be high:

- \triangleright new effect of soft gluons violating factorization has been considered in the OPE near LC
- \triangleright LCSR with B-meson DA for quantitative analysis. Soft-gluon contribution is enhanced by Wilson coefficient for $\boldsymbol{B}\to \boldsymbol{\mathsf{K}}^*\ell^+\ell^-$ and numerically important
- \triangleright the magnitude of the effect varies with observables and can reach \sim 10% in \mathcal{K}^* -meson decays being smaller for kaons.

Accuracy of ME is low compared to one of Wilson coeff. It is still comparable with exp data precision but requires a lot of further improvement...

Effective Hamiltonian:

B.Grinstein, M.J.Savage, M.B.Wise,- '89 M.Misiak,- '93 G.Buchalla, A.J.Buras, M.E.Launtenbacher,- '95

Matrix Elements:

QCDF – BBNS '01

Large recoil: M.Beneke, T.Feldman, D.Seidel,- '01

세미 시세 세계 시 제 되어 있는 게 되는 것이다.

 299

Low recoil: B.Grinstein, D.Pirjol,- '04

LCSR:

A.Khodjamirian, V.Braun,- '95 A.Khodjamirian, T.Mannel, N.Offen,- '05 P.Ball, R.Zwicky,- '05

 $B \rightarrow sq$ complete NNLO: M.Misiak + 16, PRL,- '06

 $B \to K^* II$ F.Krüger, L.M.Sehgal,- '97

 $B \to K^*$ ll compete NNLO: C.Bobeth, P.Gambino, M.Gorbahn, U.Haisch,- '11

K ロ K K @ K K B K K B K (B K

 299

c-loops: G.Buchalla, G.Isidory, S.J.Rey,- '98