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LHC data agree with SM predictions well

Primary goal – search (and discovery) of Higgs boson
and/or clarification of the mechanism of
electroweak symmetry breaking in the standard model

Hope to detect a type of NP beyond SM as well

As for SM, the gauge sector is transparent:
observed fermionic quanta – quarks and leptons
with interaction guided by gauge invariance

Higgs sector and flavor structure
– Yukawa couplings, CKM scheme, CP violation –
no clear principle

Flavor sector is certainly a place for NP



NP search with flavor

Extensive experimental study of B-physics:
CDF, BELLE, BaBar with good results

LHCb – dedicated detector for B-decay

Radiative decays B → Xsγ, B → K ∗γ (q2 = 0)

Rare semileptonic B → K ℓ+ℓ− (q2 6= 0)

Rare B → K ∗(Kπ)ℓ+ℓ− with four particle final state:
resonance approximation M2

Kπ = M2
K∗

Sophisticated angular analysis is possible: large statistics



Angular analysis

Differential rate for B → K ∗(Kπ)µ+µ−
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FCNC - loop mediated processes
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L- Loop diagram for
b → sℓ+ℓ−

a SM skeleton
for B → K ∗ℓ+ℓ−

The data constrain parameters of SM and have sensitivity
to new physics
Upgrades: superB, BelleII, super LHCb...
Presence of loops strongly suppresses rates in SM but
provides sensitivity to NP that requires high precision



Theory description
Problem of precison check: QCD effects
The strong coupling constant is large and one expects
corrections... At the parton level (quark diagram) the LO
contribution is
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Theory description
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The NLO (first iteration) contributions are not small



Theory description

b s

W

t

t

L+

L-

g

g

Even NNLO (second iteration) are not negligible



And even more

QCD variables are quarks-qluons {q, g} while
experimental modes are hadrons B,K ,K ∗, π... Therefore,
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Theory has no tool to built hadrons from quarks...



Comparison with MAMM

Example of muon MM anomaly g-2.
Same logics of loop sensitivity to NP
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Muon case is simpler as it has only leptonic external
states.
Potentially new particles run in the loops



Theory tool - separation of scales

Scale separation and Effective Theories

EW scale of SM is v = 250 GeV or in practice MW ,MZ ,mt

For ∆B = 1 processes at mb with µ ∼ E ∼ mb

OPE allows for control of αn
s ln(MW/mb)

k within pQCD
(“integrating out heavy particles”)

Heff = −4GF√
2

VtbV ∗

ts

10∑

i=1

Ci(µ)Oi(µ)

Ci(αs, µ) – short-distance pQCD coeffs,
Oi(µ) – composite local operators
This factorization is of pure PT origin and under control
through PT series in αs(µ) for Ci(αs(µ))



Operators should be at scales mb ∼ 5 GeV
RG runs down coefficients from scale µ ∼ Mt ,MZ ,MW

Ci(mb) = Uij(MW ,mb, αs(mb < µ < MW ))Cj(MW )

Known two iterations for initial values (NNLO)

Ci(MW ) = CLO
i + αs(µ)CNLO

i + αs(µ)
2CNNLO

i ,

give few % accuracy (αs(MZ ) = 0.12). Transition matrix

U(MW ,mb, αs) = ULO +
αs(µ)

π
UNLO +

(
αs(µ)

π

)2

UNNLO

depends on mixing γ and running β along the trajectory
MW > µ > mb and known with two iterations.
With αs(mb) = 0.20 the accuracy of Ci(mb) is at the level
of percents.



SM amplitudes as ME of effective operators

At LO in GF the SM amplitudes reduce to

Amp(B → K ∗ℓ+ℓ−) = −〈K ∗ℓ+ℓ− | Heff | B〉+O(dim 8)

∼ Ci(µ = mb)〈K ∗ℓ+ℓ− | Oi(µ) | B〉 +O
(

m2
b

M2
W ,m2

t

)

Ci(µ) are so precise that the next interation can require
em corr and also terms of order m2

b/M2
W ∼ (1/20)2. Top

quark mass uncertainty becomes important.
This is a triumph of pQCD at large scales.
The rest is hadronic matrix elements of Oi(mb).
And troubles begin.



Operators giving leading contributions

MEi = 〈K ∗ℓ+ℓ− | Oi(mb) | B〉

contain no large logs but depend on IR structure of QCD
– hadrons as bound states
Operators

O9 =
αem

4π
(s̄LγρbL)

(
ℓ̄γρl

)
, O10 =

αem

4π
(s̄LγρbL)

(̄
lγργ5l

)

allow for tree level computation through

〈K ∗ℓ+ℓ− | O9(µ) | B〉 = 〈K ∗ | Jh(µ) | B〉〈ℓ+ℓ− | Jl(µ) | 0〉

Completely factorizable



Relevant operators and corrections
Contributions due to O9,10 are dominant
Expressible through hadronic form factors of local
operators

L L

O9

b
s

Still there are interactions at low energies that violate this
approximation.
This is em correction...



Relevant operators

Operator

O7γ = − e
16π2

s̄σµν(msL + mbR)bFµν

requires low energy em vertex to allow for the process

L

L

O7
b

s

and also reduces to hadronic form factors.



Contributions of loop operators

Contribution of O9 is parametrized

〈K ∗(p)|s̄LγρbL|B(p + q)〉 = ǫραβγǫ
∗αqβpγ

V (q2)

mB + mK∗

−iǫ∗ρ(mB + mK∗)A1(q2) + i(2p + q)ρ(ǫ∗q)
A2(q2)

mB + mK∗

Form factors A1(q2), A2(q2), V (q2) require nonPT
methods to be used
At present the main tool is LCSR with typical accuracy of
order of 10%

There appear still more complicated objects



Charm loops picture
Tree-level four-quark charm operators O1 and O2

O1 = (s̄LγρcL) (c̄Lγ
ρbL) , O2 =

(
s̄j

Lγρc
i
L

)(
c̄ i

Lγ
ρbj

L

)

have large Wilson coeff and important. They lead to
non-local low energy contributions of the form

There are also pinquin
operators that generate
the same problem but their
coefficients are smaller.



This is a generic QCD problem.

Two kinematical regions:

large recoil or small q2 (1 < q2 < 6, basically q2 < 4m2
c –

we neglect Cabibbo suppressed u-contributions)

QCDF is used – kaon is energetic with scaling EK ∼ mb in
B-meson rest frame. Expansion in 1/mb and 1/EK is used
(HQET+SCET techniques).

Expansions are non local, require LC DA’s of kaon and
B-meson, the expansion parameter ΛQCD/EK is not small,
problems with higher orders in ΛQCD/EK ...

Advantage – form factor symmetries and reduction of the
number of independent form factors at LO



Low-recoil region

Second region: Low recoil - large q2

Applicability range M2
ψn

< q2 < m2
b = 23 GeV

It allows for a local OPE over 1/mb, 1/
√

q2 in HQET
framework.

Problems: expansion is in timelike region (“on the cut”)
and close to resonance region, in fact expansion is over
1/(m2

b − 4m2
c) that decreases the region of applicability,

efficient for penguin with light quarks...

Seems, low recoil region is now theoretically cleaner



Charm-loops amplitude

An estimate of a new effect at low q2 region
Contribution to the A(B → K ∗ℓ+ℓ−) reads

AmpO1,2 = −(4παemQc)
4GF√

2
VtbV ∗

ts
ℓ̄γµℓ

q2
H(B→K∗)
µ (p, q)

with Qc = 2/3 and

H(B→K∗)
µ (p, q) = i

∫
dx eiqx×

〈K ∗(p)|T c̄γµc(x)
[
C1O1(0) + C2O2(0)

]
|B(p + q)〉



Charm-loops amplitude essence

Key quantity (O1,2 ∼ (s̄c)(c̄b))

Tµ = TO1,2(0)Jµ(x) = T c̄γµc(x)O1,2(0)

is a nonlocal amplitude that is expanded on LC

TO(0)Jµ(x) = s̄Γb ⊗ C(x) + s̄Gb ⊗ CG(x) + ...

At LO in αs and LO operator, the coefficient C is given by
the two-point product

C → (c i(x)c̄ j(x))Jµ(0)

It can be computed in PT at q2 ≪ 4m2
c that leads

to fact approximation (LO of QCDF)



Charm-loops amplitude at LO = factorization

Thus at LO the amplitude

H(B→K∗)
µ (p, q)|LO =

(
C1

3
+ C2

)
〈K ∗(p)|Oµ(q)|B(p + q)〉

where both O1,2 contribute and the local operator

Oµ(q) = (qµqρ − q2gµρ)
9

32π2
g(m2

c , q
2)s̄Lγ

ρbL

reduces ME to B → K ∗ form factors.



Factorized charm loop

b
s

c

c

L

L

The LO charm-loop
coefficient function is
given by its imaginary part

1
π

Imsg(m2
c , s) =

4
9

√
1 − 4m2

c

s
(1 +

2m2
c

s
)Θ(s − 4m2

c)

It is “short-distance” charm-loop effect.



A model generalization

b
s

c

c

L

L
One can generalize the
contribution of charm loop
using physical
representation through
dispersion relation in the
variable q2

1
π

Imsg(m2
c , s) =

∑

i

f 2
i δ(s − M2

ψi
) + cont(DD)

This expression leads to the same behavior at low q2 but
can also be continued to large q2 giving a model of
analytic continuation.



Corrections to factorization (LO) are both PT and nonPT.

b
s

c

c

L

L

Even NLO PT corrections
violate factorization.

I discuss the nonPT soft gluon corrections
A.Khodjamirian,Th.Mannel,AAP,Y.-M.Wang, JHEP09(2010)089

B̄

γ∗
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d

c

Here B → K ∗ matrix
element contains
soft-gluon emission from
the charm loop.



NonFactorized charm loop

The c-quark loop with the emitted gluon generates the
nonlocal effective operator Õµ

One casts the soft-gluon emission part to a form

H(B→K∗)
µ (p, q)|nonfact = 2C1〈K ∗(p)|Õµ(q)|B(p + q)〉

where Õµ(q) is a convolution of the coefficient function
with the nonlocal operator

Õµ(q) =
∫

dω Iµραβ(q, ω)s̄Lγ
ρδ[ω − (in+D)

2
]G̃αβbL

This matrix element resembles a nonforward distribution
with different initial and final hadrons.



Spectral density of coeff function

The coeff function Iµραβ(q, ω) is given by its spectral
density

1
π

Im Iµραβ(q, ω) =
m2

cΘ(q̃2 − 4m2
c)

4π2q̃2
√

q̃2(q̃2 − 4m2
c)

∫ 1

0
du

{
ūq̃µq̃αgρβ + uq̃ρq̃αgµβ −

[
u +

(ū − u)q̃2

4m2
c

]
q̃2gµαgρβ

}

with q̃ = q − uωn−, so that q̃2 ≃ q2 − 2uωmb



Non-factorizable amplitude reads

H(B→K∗)
µ (p, q) = (C1/3 + C2)〈K ∗(p)|Oµ(q)|B(p + q)〉

+2C1〈K ∗(p)|Õµ(q)|B(p + q)〉 = ǫµαβγǫ
∗αqβpγH1(q2)

+i [(m2
B − m2

K∗)ǫ∗µ − (ǫ∗q)(2p + q)µ]H2(q2)

+i(ǫ∗q)[qµ −
q2

m2
B − m2

K∗

(2p + q)µ]H3(q2)

and Hi(q2) = (C1/3 + C2)Vi(q2) + 2C1Ṽi(q2) with Ṽ (q2)
being soft-gluon amplitude.
Numerically, C1 = 1.12, C2 = −0.27 that suppresses
(enhances) V (q2) (Ṽ (q2))



LC sum rules

We compute soft-gluon emission amplitude Ṽi using
LCSR with the B-meson DA’s

Take correlation function

Fνµ(p, q) = i
∫

dyeip·y〈0|TjK∗

ν (y)Õµ(q)|B(p + q)〉

with jK∗

ν = d̄γνs and extract a residue

Fνµ(p, q) =
fK∗ǫν〈K ∗(p)|Õµ(q)|B(p + q)〉

m2
K∗ − p2

+

∫
∞

sh

dsρνµ(s, q2)

s − p2

where fK∗ is the K ∗ residue into the current and higher
mass states are represented by the integral from sh



B-meson DA decomposition

In theory the correlator is computed using B-meson DA
with independent components ΨA,ΨV ,XA,YA

〈0|d̄α(y)δ[ω − (in+D)

2
]Gστ (0)bβ(0)|B̄(v)〉

=
fBmB

2

∫
dλe−iλyv

[
(1+ 6 v)

{
(vσγτ − vτγσ)

[
ΨA −ΨV

]

−iσστΨV − yσvτ − yτvσ
v · y

XA +
yσγτ − yτγσ

v · y
YA

}
γ5

]

βα

where fB is the B-meson decay constant



B-meson DA model

Model DA for B-meson

ΨA(λ, ω) = ΨV (λ, ω) =
λ2

E

6ω4
0

ω2e−(λ+ω)/ω0

XA(λ, ω) =
λ2

E

6ω4
0

ω(2λ− ω)e−(λ+ω)/ω0

YA(λ, ω) = − λ2
E

24ω4
0

ω(7ω0 − 13λ+ 3ω)e−(λ+ω)/ω0

Here ω0 = 1/λB of the B-meson two-particle DA φB
+

Normalization of the three-particle DA’s is λ2
E = 3/2λ2

B



Results for C9: O9 = sbll

∆C c̄c,Mi
9 = (C1 + 3C2)g(mc, q) + 2C1g̃c̄c,Mi

with

g̃c̄c,M1(q2) = −(mB + mK∗)

q2

Ṽ1(q2)

V BK∗(q2)

g̃c̄c,M2(q2) =
(mB − mK∗)

q2

Ṽ2(q2)

ABK∗

1 (q2)

g̃c̄c,M3(q2) =
mB + mK∗

q2

Ṽ2(q2)

ABK∗

2 (q2)
+

1
mB − mK∗

Ṽ3(q2)

ABK∗

2 (q2)

C1 = 1.12, C2 = −0.27 that makes C1 + 3C2 = 0.31

C9 = 4.2



Results for K ∗

Coeff ∆C9 for M1 amplitude
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Coeff ∆C9 for M3 amplitude
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q2
0 = 2.9 ± 0.3 while without soft-gluon q2
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Forward-backward asymmetry for B̄0 → K̄ ∗µ+µ− decay
with charm-loop effect (solid), without this effect (dashed).



Summary

c-quark operators come with large Wilson coeffs. The
accuracy of their ME should be high:

◮ new effect of soft gluons violating factorization has
been considered in the OPE near LC

◮ LCSR with B-meson DA for quantitative analysis.
Soft-gluon contribution is enhanced by Wilson
coefficient for B → K ∗ℓ+ℓ− and numerically important

◮ the magnitude of the effect varies with observables
and can reach ∼ 10% in K ∗-meson decays being
smaller for kaons.

Accuracy of ME is low compared to one of Wilson coeff. It
is still comparable with exp data precision but requires a
lot of further improvement...
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