## **The Matrix Element Measurement Method**

# Frank Fiedler Johannes Gutenberg-Universität Mainz

Pizza Seminar November 25, 2011

## further reading:

- NIM A624:203-218 (2010)
  - on the matrix element method in general and its application to the top mass measurement
- arXiv:1003.0521 [hep-ex]
  - on top mass measurements, includes a comparison of measurement techniques

## Suppose...

you arrive at a conference venue on a very foggy day.

## Can you...

decipher the signs?

## Suppose...

you arrive at a conference venue on a very foggy day.

## Can you...

decipher the signs?

# HOTEL

## Suppose...

you arrive at a conference venue on a very foggy day.

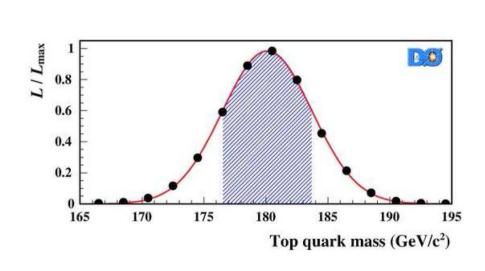
## Can you...

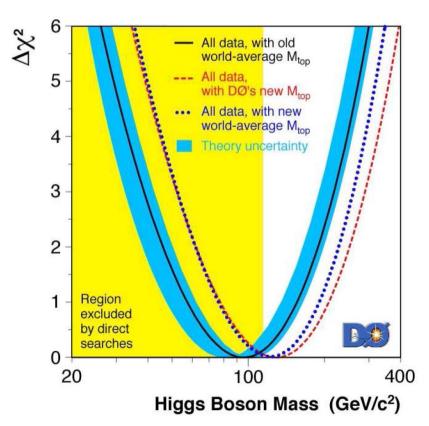
decipher the signs?

## Suppose...

you arrive at a conference venue on a very foggy day.

## Can you...


decipher the signs?




# The Top Quark Mass, 2004

Nature 429:638-642 (2004) / arXiv: hep-ex/0406031:

- "A precision measurement of the mass of the top quark"
- "The improvement in statistical uncertainty over our previous measurement [which was based on the same integrated luminosity] is equivalent to collecting a factor of 2.4 as much data."





## **Overview**

## **Prologue:**

- on a foggy day
- measurement of the top quark mass in 2004

#### The method:

- how the matrix element measurement method works
- how this is different from 'normal' measurements

## **Applications of the method:**

- measurement of the top quark mass, including technical issues
- calibration
- other measurements, very briefly

## What do I mean by $m_{top}$ ?

various different meanings of the same word

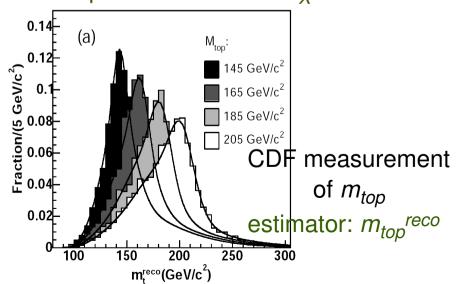
#### Wish list

# **Template Measurements**

Imagine you want to measure some quantity, e.g. the mass  $m_X$  of a resonance X.

#### Typically:

- pick a final state
- trigger on it and select events
- in each selected event, ...
  - reconstruct final state particles
  - compute value of an estimator
  - fill estimator into a histogram
- look at the histogram
- know that the detector isn't perfect


# **Template Measurements**

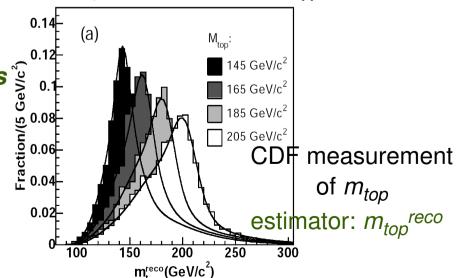
Imagine you want to measure some quantity, e.g. the mass  $m_X$  of a resonance X.

#### Typically:

- pick a final state
- trigger on it and select events
- in each selected event, ...
  - reconstruct final state particles
  - compute value of an estimator
  - fill estimator into a histogram
- look at the histogram
- know that the detector isn't perfect

- generate signal and background MC (signal for various assumed masses  $m_X$ )
- simulate trigger, select events
- in each selected event, ...
  - reconstruct final state particles
  - compute value of the estimator
  - fill estimator into another histogram: templates for various  $m_X$




# **Template Measurements**

Imagine you want to measure some quantity, e.g. the mass  $m_X$  of a resonance X.

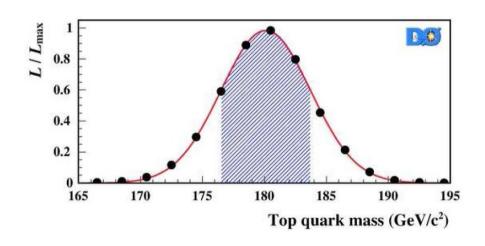
#### Typically:

- pick a final state
- trigger on it and select events
- in each selected event, ...
  - reconstruct final state particles
  - compute value of an estimator
  - fill estimator into a histogram
- look at the histogram
- know that the detector isn't perfect
- compare data histogram with MC histograms extract the mass  $m_X$  from a fit (worry about systematics...)

- generate signal and background MC (signal for various assumed masses  $m_X$ )
- simulate trigger, select events
- in each selected event, ...
  - reconstruct final state particles
  - compute value of the estimator
  - fill estimator into another histogram: templates for various  $m_X$



# **Measurement Strategies**

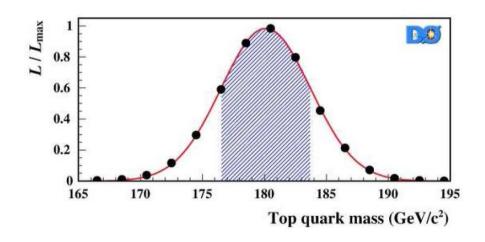

#### Pros and cons of the **template measurement method**:

- straightforward to implement
- you see what you're going to get
- only one estimator per event: have to choose one set of reconstructed 4momenta
- what estimator to take if full kinematic reconstruction of the event is impossible?
- all events enter with the same weight, but: ...
  - likelihood of an event to be signal different for different events
  - different amounts of mass information in different events

Next: matrix element method...

The matrix element method to measure a set of parameters  $\vec{\alpha}$ 

- pick a reaction that depends on  $\vec{\alpha}$
- select events
- compute the likelihood  $L_{\rm sample}$  to observe the sample of selected events as a function of assumed values of the parameters  $\vec{\alpha}$  you want to measure
- ullet fit -In  $L_{
  m sample}$  and determine  $ec{lpha}$
- done :-)




The matrix element method to measure a set of parameters  $\vec{\alpha}$ 

- pick a reaction that depends on  $\vec{\alpha}$
- select events

the fine print:

- compute the likelihood  $L_{\rm sample}$  to observe the sample of selected events as a function of assumed values of the parameters  $\vec{\alpha}$  you want to measure
- ullet fit -In  $L_{
  m sample}$  and determine  $ec{lpha}$
- done



## How to compute $L_{\rm sample}$ :

events are independent

$$L_{\text{sample}}(\vec{\alpha}) = \prod_{i=1}^{N} L_{\text{evt}}(x_i, \vec{\alpha})$$

## How to compute $L_{\rm sample}$ :

events are independent

$$L_{\text{sample}}(\vec{\alpha}, \vec{f}) = \prod_{i=1}^{N} L_{\text{evt}}(x_i, \vec{\alpha}, \vec{f})$$

 each event can arise from different processes

$$L_{\text{evt}}(x_i, \vec{\alpha}, \vec{f}) = \sum_{\text{processes}} f_P L_P(x_i, \vec{\alpha})$$

## How to compute $L_{\rm sample}$ :

events are independent

$$L_{\text{sample}}(\vec{\alpha}, \vec{f}) = \prod_{i=1}^{N} L_{\text{evt}}(x_i, \vec{\alpha}, \vec{f})$$

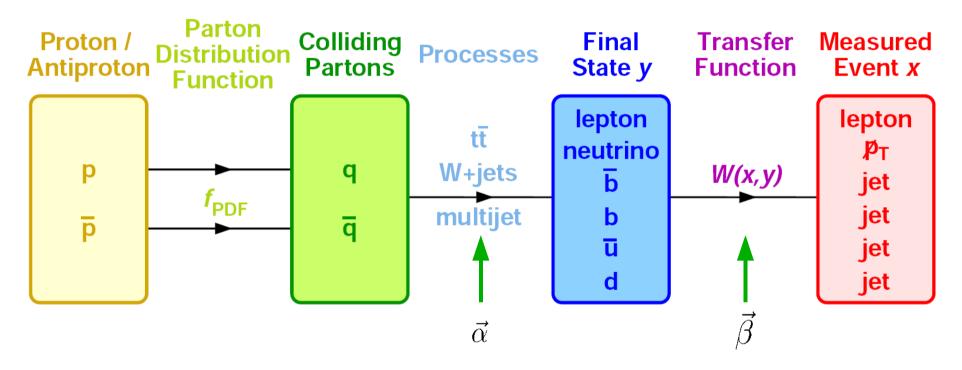
 each event can arise from different processes

$$L_{\mathrm{evt}}(x_i, \vec{\alpha}, \vec{f}) = \sum_{\mathrm{processes}} f_P L_P(x_i, \vec{\alpha})$$

• where the likelihoods for an event  $x_i$  to arise from any process sums up to one

$$\sum_{\text{processes}} f_P = 1$$

How to get the likelihood  $L_P$  for an event  $x_i$  to have arisen from process P:


• the detector W has smeared the original event y so that we measure x<sub>i</sub>:

$$L_P(x_i) = \int_y L_P(y)W(x_i, y)dy$$

we can compute the likelihood to produce an event y
 (likelihood is proportional to the differential cross section):

$$L_P(y) \sim d\sigma_P(y) \sim |\mathcal{M}(pp \xrightarrow{P} y)|^2 d\phi$$

Example: ttbar production at the Tevatron:



- only the matrix element  $|\mathcal{M}(y)|^2$  depends on the parameters  $\vec{\alpha}$  (e.g.: top mass)
- simultaneously measure parameters  $\vec{\beta}$  describing the detector response W (e.g.: jet energy scale) => multi-parameter fit of -ln  $L_{\rm sample}(\vec{\alpha}, \vec{\beta}, \vec{f})$

# **Measurement Strategies**

#### Pros and cons of the **template measurement method**:

- straightforward to implement
- you see what you're going to get
- only one estimator per event: have to choose one set of reconstructed 4momenta
- what estimator to take if full kinematic reconstruction of the event is impossible?
- all events enter with the same weight, but: ...
  - likelihood of an event to be signal different for different events
  - different amounts of mass information in different events

#### Pros and cons of the **matrix element method**:

- hard to compute integrals
- hard to debug
- make optimal use of kinematic information
- natural to use even if full kinematic reconstruction impossible
- each event is assigned an optimal weight

## Overview

## **Prologue:**

- on a foggy day
- measurement of the top quark mass in 2004

#### The method:

- how the matrix element measurement method works
- how this is different from 'normal' measurements

## **Applications of the method:**

- measurement of the top quark mass, including technical issues
- calibration
- other measurements, very briefly

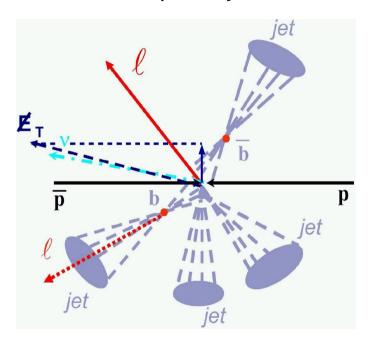
## What do I mean by $m_{top}$ ?

various different meanings of the same word

#### Wish list

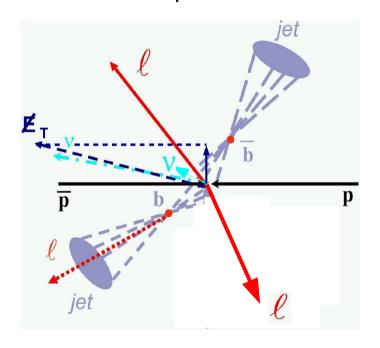
# **Measurement of the Top Quark Mass**

... as an example of how to implement such a measurement


#### Implementations of the matrix element method:

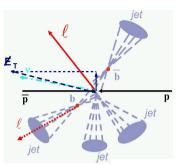
- shown here: results with "CERN-Mainz-Munich-Hamburg" code
- the competition:
  - MadWeight
  - program for original D0 matrix element m<sub>top</sub> measurement (Nature)
  - CDF programs
  - new implementations for ATLAS, others I don't know of...

# **Measurement of the Top Quark Mass**

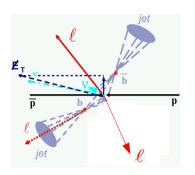

... as an example of how to implement such a measurement

decay channels: "lepton+jets"




- relatively clean (main bkg: W+jets)
- full kinematic reconstruction possible
- 24 possible assignments of jets to final-state (anti-)quarks

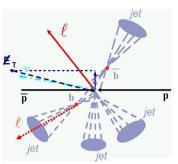
"dilepton"



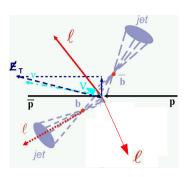

- very clean (main bkg: Z+jets, WW+jets)
- full kinematic reconstruction impossible
- 2 possible assignments of jets to finalstate (anti-)b-quarks

"lepton+jets" event *x* 




"dilepton" event *x* 

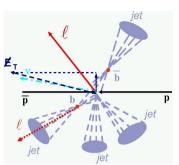



$$L_P(x_i) = \int_y L_P(y)W(x_i, y)dy$$

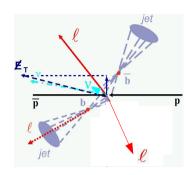
- 6 final-state particles, known masses
  - => 18-dimensional MC integration over possible final states *y*

"lepton+jets" event *x* 




"dilepton" event *x* 



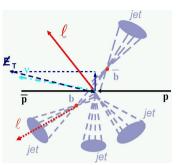

$$L_P(x_i) = \int_y L_P(y)W(x_i, y)dy$$

- 6 final-state particles, known masses
  - => 18-dimensional MC integration over possible final states *y*
- switch on brain
  - 0. perhaps assume  $p_T(ttbar)=0$
  - 1. know we have narrow resonances in the decay chain
  - 2. consider only final states y that can have led to measured event x
  - => reduce number of dimensions

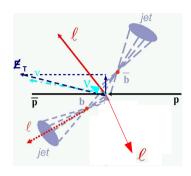
"lepton+jets" event *x* 



"dilepton" event *x* 




$$L_P(x_i) = \int_y L_P(y)W(x_i, y)dy$$


- Narrow resonances in the decay chain for ttbar events:
  - top quark with hadronic W decay:
    - W resonance is narrow in comparison with jet energy resolution
    - top resonance is narrow in comparison with jet energy resolution
  - top quark with leptonic W decay:
    - W resonance is narrow in comparison with unknown  $v p_z$
    - top resonance is narrow in comparison with jet energy,  $v p_T$  resolution

=> only final states y with appropriate masses contribute significantly to integral

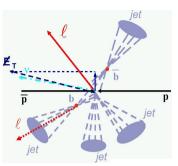
"lepton+jets" event *x* 



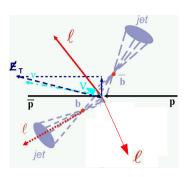
"dilepton" event *x* 



$$L_P(x_i) = \int_y L_P(y)W(x_i, y)dy$$


- 2. Consider only final states y that can have led to measured event x for ttbar events:
  - (anti-)quark => jet; electron => electron; muon => muon
  - electrons: energy and direction well-measured (compare: ν, q)
  - muons: direction well-measured (compare: ν, q)

integrate over  $q/p_T$ 


quarks: direction well-measured (compare: energy)

integrate over  $E_q$ 

"lepton+jets" event *x* 



"dilepton" event *x* 



$$L_P(x_i) = \int_y L_P(y)W(x_i, y)dy$$

**Choice of variables** for integration over final states *y*:

- minimization of dimension of MC integration
- easy computation of 4-momenta from values of integration variables (quadratic equation)

Integration variables (lepton+jets case):

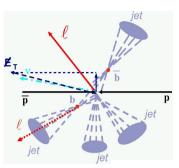
• 
$$m_{\rm t_{had}}^2$$
,  $m_{\rm t_{lep}}^2$ ,  $m_{\rm W_{had}}^2$ 

• 
$$E_{\rm u}$$
,  $(q/p_T)_{\mu}$ 

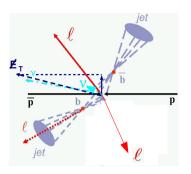
• 
$$(p^z)_{bv}$$

Integration variables (dilepton case):

• 
$$m_{t_1}^2$$
,  $m_{t_2}^2$ 


• 
$$E_{b_1}$$
,  $E_{b_2}$ ,  $(q/p_T)_{\mu}$ 

• 
$$(p^x)_{v_1}^{} - (p^x)_{v_2}^{}$$
,  $(p^y)_{v_1}^{} - (p^y)_{v_2}^{}$ 


=> 5-6 dimensions

=> 6-8 dimensions

"lepton+jets" event *x* 



"dilepton" event *x* 



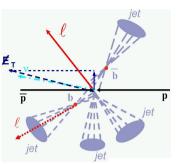
$$L_P(x_i) = \int_y L_P(y)W(x_i, y)dy$$

Naïve estimate of computation time...

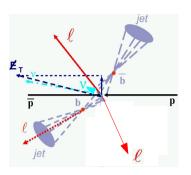
## for one lepton+jets event x:

- per quark-jet assignment:
  - $\mathcal{D}(10^4-10^5)$  calls => 2-5% accuracy

takes 2-5 s
 detector parametrization optimized for speed


dedicated implementation of  $|M|^2$  for

g g  $\rightarrow$  t tbar  $\rightarrow$  b u dbar bbar I  $\nu$ 


q qbar  $\rightarrow$  t tbar  $\rightarrow$  b u dbar bbar I  $\nu$ 

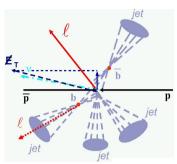
no more than  $\mathcal{D}(ms)$  per quark-jet assignment, please...:-)

"lepton+jets" event *x* 

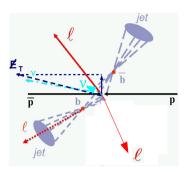


"dilepton" event *x* 




$$L_P(x_i) = \int_y L_P(y)W(x_i, y)dy$$

Naïve estimate of computation time...


## for one lepton+jets event x:

- per quark-jet assignment:
  - $\mathcal{D}(10^4-10^5)$  calls => 2-5% accuracy
  - takes 2-5 s
- for all assignments and one top quark mass assumption:
  - 24 ⋅ (2-5) s = (1-2) min
- for  $\mathcal{D}(10)$   $m_{\text{top}}$  assumptions:
  - ~10-20 CPU-minutes per event

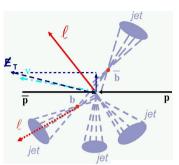
"lepton+jets" event *x* 



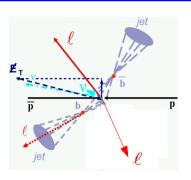
"dilepton" event *x* 



$$L_P(x_i) = \int_y L_P(y)W(x_i, y)dy$$


Naïve estimate of computation time... for one lepton+jets event *x*:

- per quark-jet assignment:
  - $\mathcal{D}(10^4-10^5)$  calls => 2-5% accuracy
  - takes 2-5 s
- for all assignments and one top quark mass assumption:
  - 24 ⋅ (2-5) s = (1-2) min
- for  $\mathcal{D}(10)$   $m_{\text{top}}$  assumptions:
  - ~10-20 CPU-minutes per event


Naïve estimate of computation time... for one dilepton event *x*:

- per quark-jet assignment:
  - $\mathcal{D}(10^5-10^6)$  calls => 2-5% accuracy
  - takes D(10-30) s
- for both assignments and one top quark mass assumption:
  - $2 \cdot 30 \text{ s} = 1 \text{ min}$
- for  $\mathcal{D}(10)$   $m_{\text{top}}$  assumptions:
  - ~10 CPU-minutes per event

"lepton+jets" event *x* 



"dilepton" event *x* 



$$L_P(x_i) = \int_y L_P(y)W(x_i, y)dy$$

Naïve estimate of computation time...

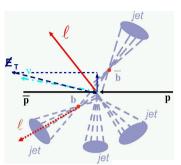
for 1000 data events:

for 3000 MC events:

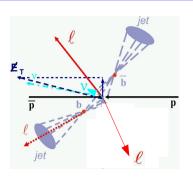
• but you need those for say 5 true top mass values: for background likelihood computation for systematic uncertainties:

~ 10 CPU days

~ 30 CPU days


~150 CPU days

~factor 2


~factor 2

=> 2 CPU years for a top mass measurement

"lepton+jets" event *x* 



"dilepton" event *x* 



$$L_P(x_i) = \int_y L_P(y)W(x_i, y)dy$$

Naïve estimate of computation time...

for 1000 data events:

for 3000 MC events:

• but you need those for say 5 true top mass values:

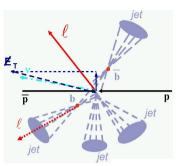
for background likelihood computation

for systematic uncertainties:

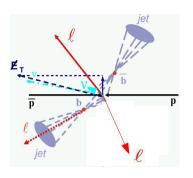
~ 10 CPU days

~ 30 CPU days

~150 CPU days


~factor 2

~factor 2


## => 2 CPU years for a top mass measurement

- usually measure >1 parameter (top mass, jet energy scale, b-jet energy scale)
  - => factor 5-10 for each additional parameter
- isr jets easily make things worse

"lepton+jets" event *x* 



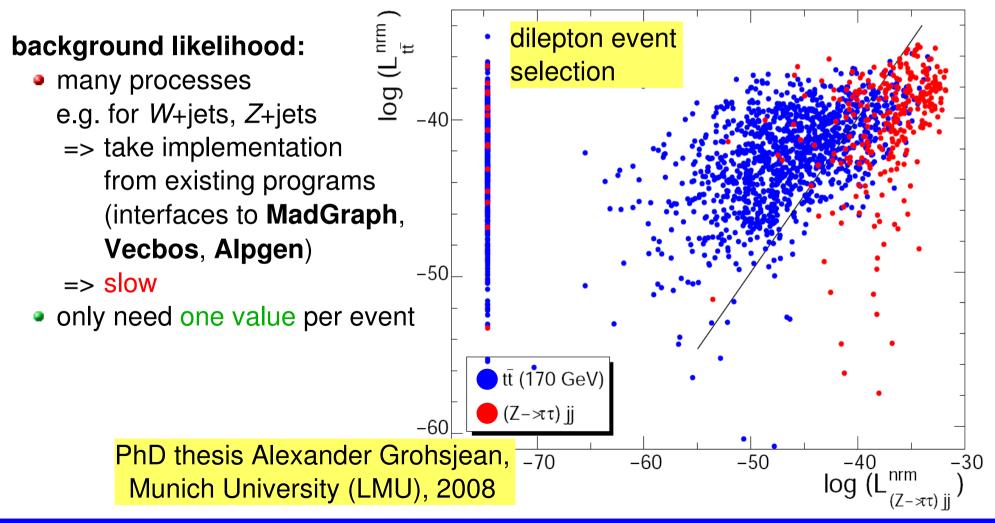
"dilepton" event *x* 



$$L_P(x_i) = \int_y L_P(y)W(x_i, y)dy$$

## CPU years for a top mass measurement

=> optimize:


- quick look at quark-jet assignments to see which ones really contribute before starting lengthy calculations
- avoid recomputation of values you know

**a** 

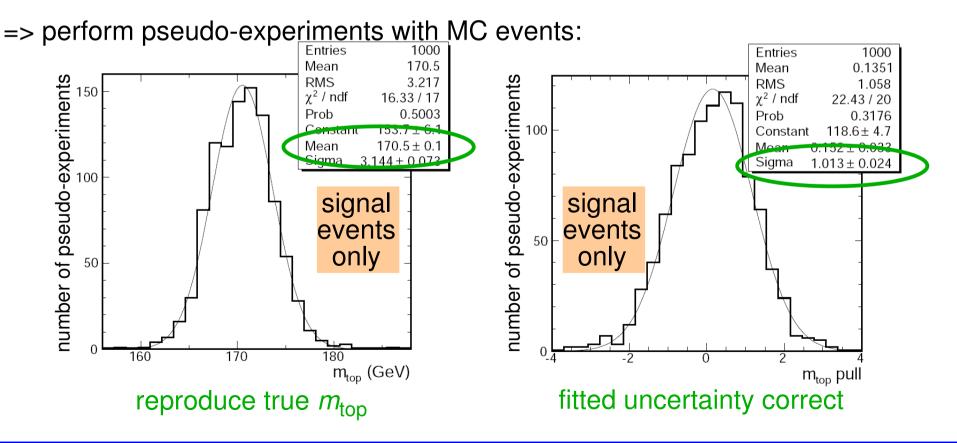
# **Background Likelihood Calculation**

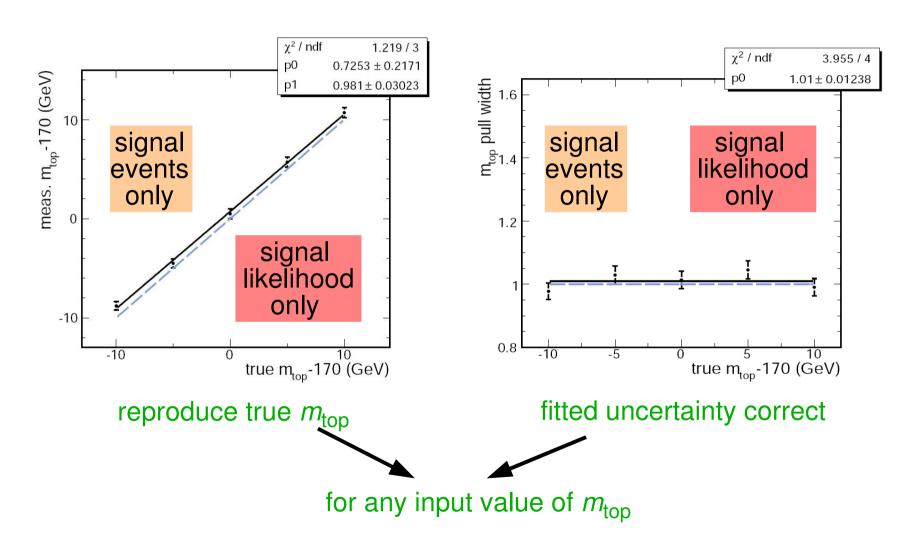
### signal likelihood:

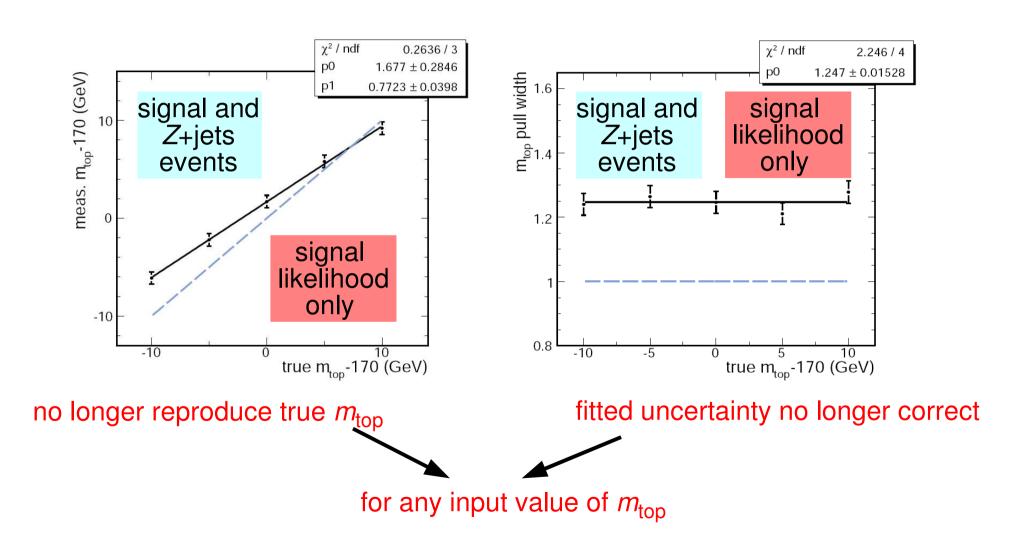
- simple process, dedicated implementation of LO matrix element
- calculation for several assumed values of  $m_{\text{top}}$

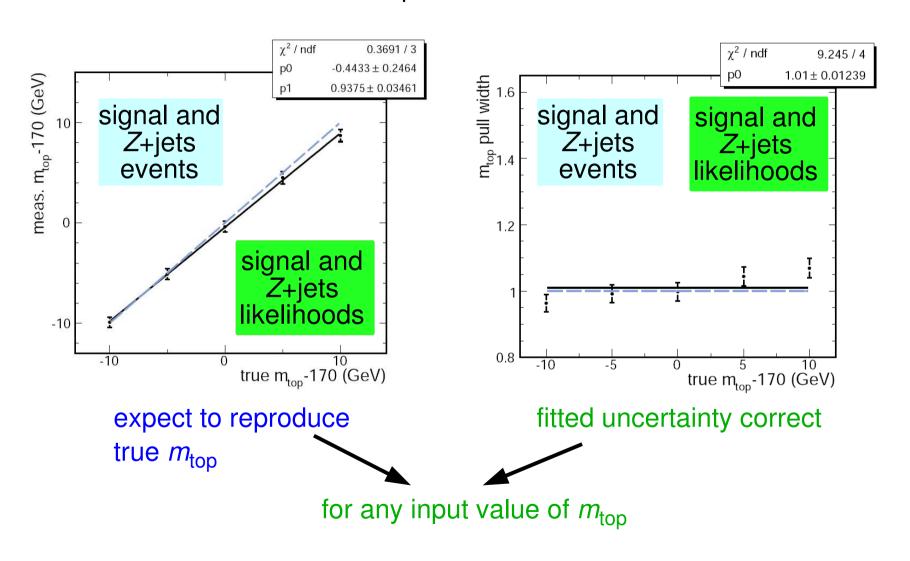


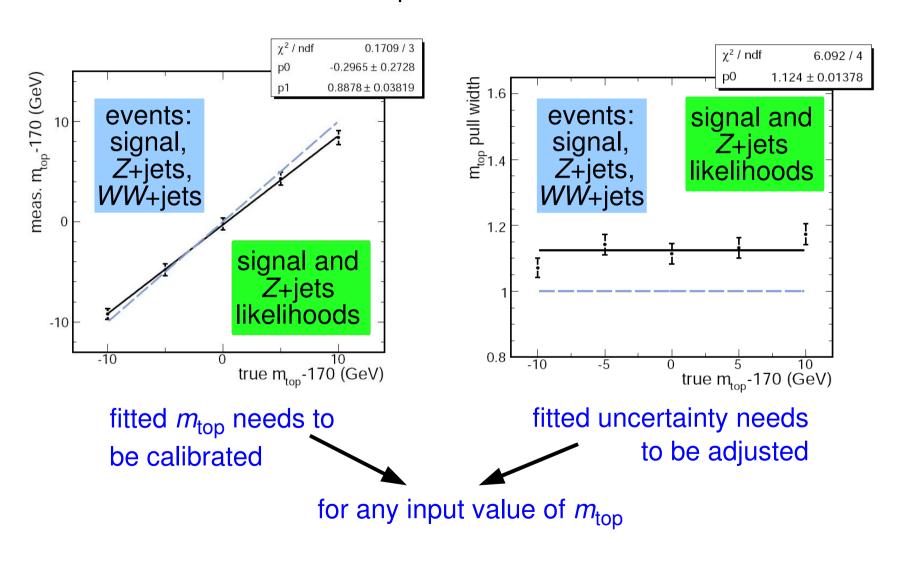
# **Testing the Method**


### **Approximations**:


- LO matrix element
- not all possible processes considered
- parametrized detector resolution (no Geant)
- => need to test & calibrate the method with full Monte Carlo simulation!

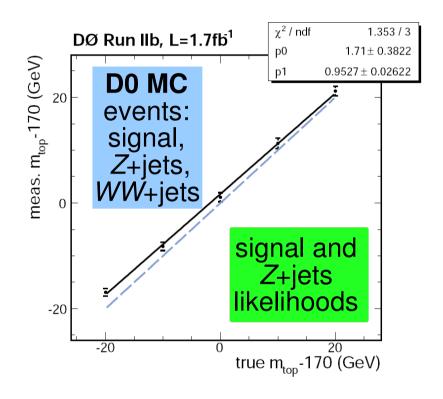

# **Testing the Method**

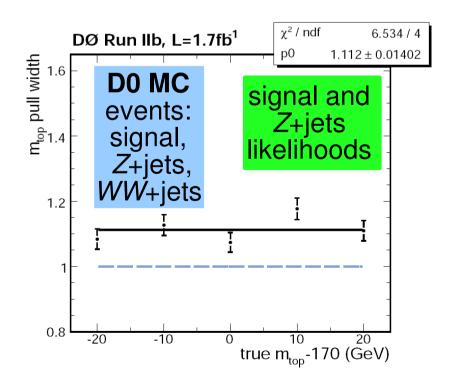

## **Approximations**:


- LO matrix element
- not all possible processes considered
- parametrized detector resolution (no Geant)
- => need to test & calibrate the method with full Monte Carlo simulation!

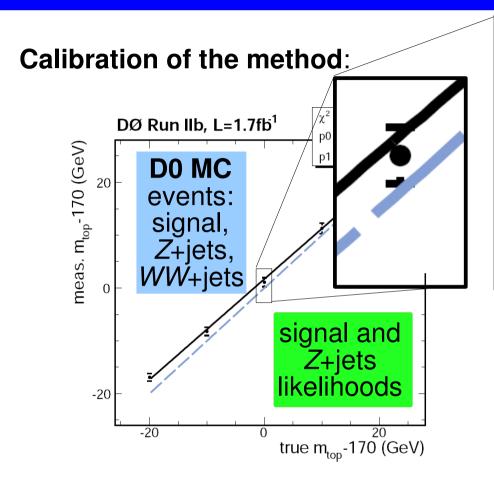






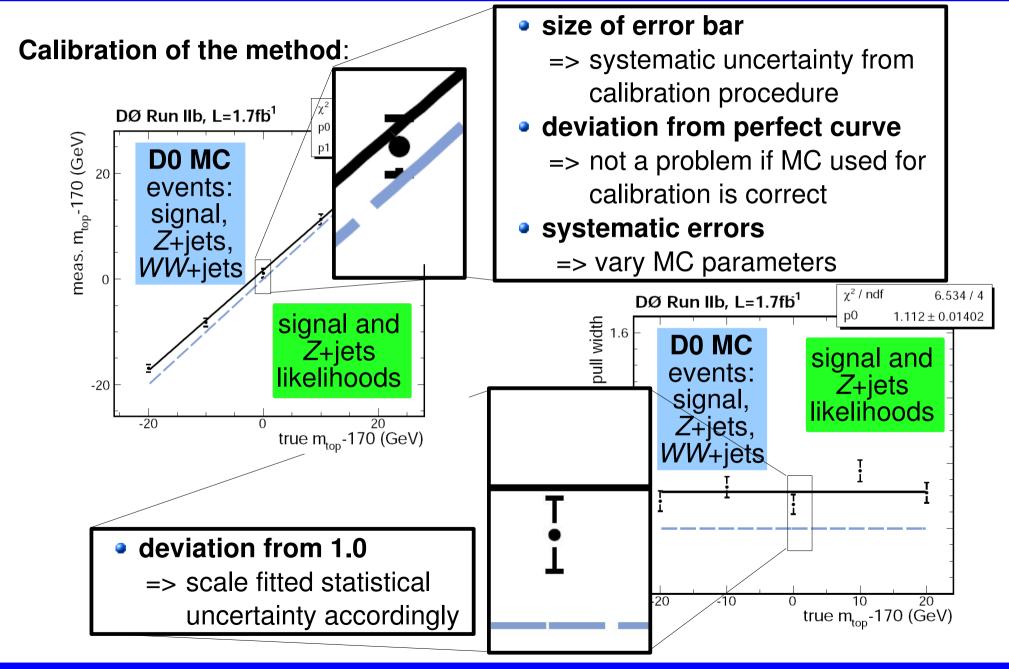







## **Calibrating the Method**

#### Calibration of the method: with fully simulated events

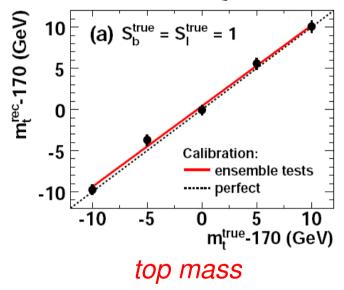


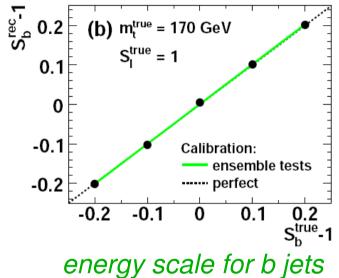


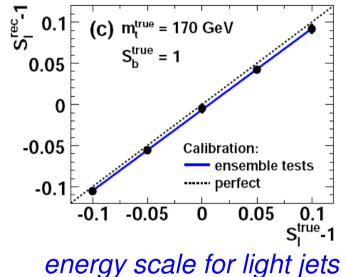

## **Calibrating the Method**



- size of error bar
  - => systematic uncertainty from calibration procedure
- deviation from perfect curve
  - => not a problem if MC used for calibration is correct
- systematic errors
  - => vary MC parameters


## **Calibrating the Method**

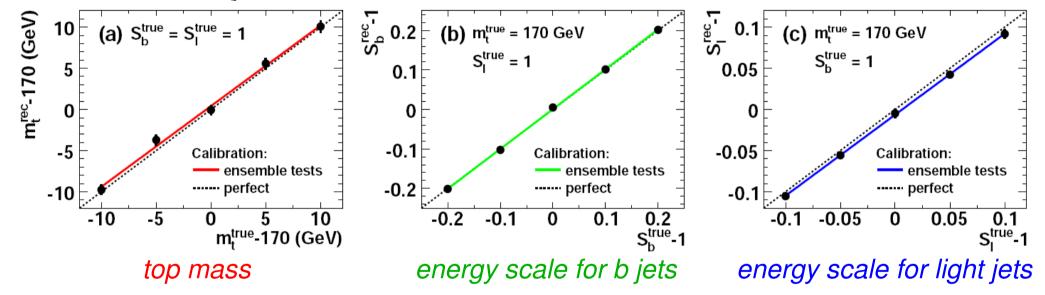




### **More Measurements**

All of this also works for...

simultaneous measurement of top mass and jet energy scales
 reduce systematics








### **More Measurements**

All of this also works for...

simultaneous measurement of top mass and jet energy scales
 reduce systematics



All of this also works for...

• measurement of  $m_H$  once a signal has been established

All of this also works in principle to...

look for new physics, but only if you know exactly what you're looking for

### **Overview**

### **Prologue:**

- on a foggy day
- measurement of the top quark mass in 2004

#### The method:

- how the matrix element measurement method works
- how this is different from 'normal' measurements

### **Applications of the method:**

- measurement of the top quark mass, including technical issues
- calibration
- other measurements, very briefly

### What do I mean by $m_{\text{top}}$ ?

various different meanings of the same word

#### Wish list

### What do I mean by top mass?

depending on the context, ...

- ... the mass  $m_t^{PDG}$  of a particle
- ... a parameter  $m_t^{MC}$  of an event generator
- ... the mass  $m_t^{\text{true}}$  that a top quark has in an event ("final state") y
- ... the reconstructed mass  $m_{\rm t}^{\rm reco}$  computed from objects in the reconstructed event x
- ... an integration variable, e.g.  $m_{\rm t_{had}}^{2}$
- ... the current value of the integration variable
- ... the result of a measurement.

(look it up in the PDG book)

(Pythia parameter)

 $(m_{\rm t}^{\rm true} \ {\rm is} \ {\rm within} \ {\rm a} \ {\rm few} \ \sigma_{\rm t}^{\rm MC} \ {\rm of} \ m_{\rm t}^{\rm MC} \dots)$ 

(estimator in the template method)

(to integrate over final states y)

(in an integration step)

### What do I mean by top mass?

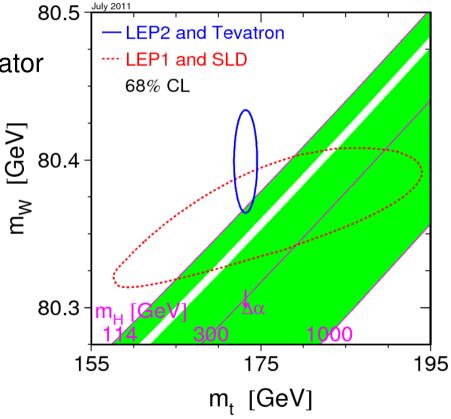
depending on the context, ...

- ... the mass  $m_t^{PDG}$  of a particle
- ... a parameter  $m_t^{MC}$  of an event generator
- ... the mass  $m_t^{\text{true}}$  that a top quark has in an event ("final state") y
- ... the reconstructed mass  $m_t^{\text{reco}}$  computed from objects in the reconstructed event x
- ... an integration variable, e.g.  $m_{\rm t_{had}}^{2}$
- ... the current value of the integration variable
- ... the result of a measurement.

hope the generator reproduces nature

calibrate the measurement with generated events

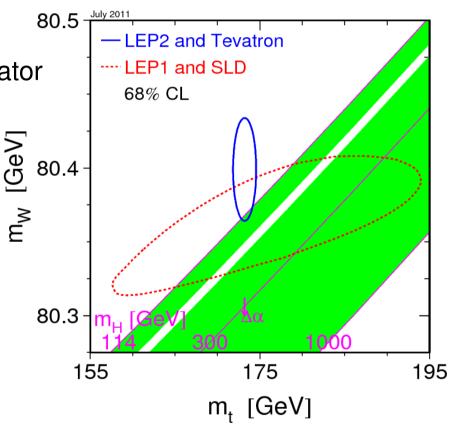
#### Validity of measurements with the matrix element method


#### Strictly speaking:

- measure a parameter of an event generator
- may use result...
  - to constrain generator parameters
  - to cross-check model
- if new physics is discovered
  - generator model proven wrong
  - measurement is "wrong"

#### Validity of measurements with the matrix element method

### Strictly speaking:


- measure a parameter of an event generator
- may use result...
  - to constrain generator parameters
  - to cross-check model
- if new physics is discovered
  - generator model proven wrong
  - measurement is "wrong"



#### Validity of measurements with the matrix element method

### Strictly speaking:

- measure a parameter of an event generator
- may use result...
  - to constrain generator parameters
  - to cross-check model
- if new physics is discovered
  - generator model proven wrong
  - measurement is "wrong"
- true also of template measurement
- matrix element method tends to
  - ... have higher statistical sensitivity
  - ... be more affected by new physics



### **Overview**

### **Prologue:**

- on a foggy day
- measurement of the top quark mass in 2004

#### The method:

- how the matrix element measurement method works
- how this is different from 'normal' measurements

### **Applications of the method:**

- measurement of the top quark mass, including technical issues
- calibration
- other measurements, very briefly

### What do I mean by $m_{\text{top}}$ ?

various different meanings of the same word

#### Wish list

### Wish List

#### **Current work in Mainz:**

- ttbar resonance search at ATLAS:
  - use the matrix element method to reconstruct  $m_{\rm ttbar}$  on an event by event basis
- Higgs search and measurements at ATLAS:
  - $H \rightarrow WW \rightarrow I \nu I \nu$  channel
  - Higgs mass, spin and CP

#### Wish list:

event generator that ...
 generates events y in the phase space region
 where a measured event x happens to be



Malene Thyssen