QCD resummation for Drell-Yan-like processes Beyond the Standard Model.

Benjamin Fuks (IPHC Strasbourg / Université de Strasbourg).

In collaboration with G. Bozzi, J. Debove, M. Klasen, F. Ledroit, Q. Li & J. Morel.

Theorie-Palaver @ Institut für Physik, THEP. Johannes Gutenberg-Universität. July 19, 2011.

Outline.

2 Resummation and parton showering.

3 Numerical results, including uncertainties, for Z' and supersymmetry at the LHC.

To start: a simple question.

• One of the LHC purposes: which model of new physics is the correct one?

- * We need data.
- * We need theoretical predictions for all models.
- * We need reliable predictions. [that is the aim of this talk].

Confront data and theory.

- How to make reliable predictions? toy case.
 - * Process: Drell-Yan lepton pair production at the Tevatron.
 - * Considered observables:
 - \diamond the lepton-pair invariant-mass distribution $\frac{d\sigma}{dM}$.
 - \diamond the lepton-pair transverse-momentum distribution $\frac{d\sigma}{d\sigma}$.
 - * No new physics [for the moment...].

QCD factorization theorem.

$$\frac{\mathrm{d}\sigma}{\mathrm{d}\omega} = \sum_{ab} \int \mathrm{d}x_a \, \mathrm{d}x_b \, f_{a/p_1}(x_a;\mu_F) \, f_{b/p_2}(x_b;\mu_F) \, \frac{\mathrm{d}\sigma_{ab}}{\mathrm{d}\omega}(\dots,\mu_F) \, ,$$

where $\boldsymbol{\omega}$ is any kinematical variable.

- Long-distance and short-distance physics factorize. ⇒ Convolution of parton densities and the partonic distribution.
- Long-distance physics: parton densities f_{a/p_1} , f_{b/p_2} .
 - * Fitted from experimental data.
 - * Depend on the momentum fractions x_i of parton *i* in the proton p_i .
- Short-distance physics: differential partonic cross section $d\sigma_{ab}$.
 - * Use of **QCD perturbation theory**.

$$\mathrm{d}\sigma = \mathrm{d}\sigma^{(0)} + \alpha_s \,\mathrm{d}\sigma^{(1)} + \dots$$

- * Calculation of the matrix elements order by order.
- Introduction of the unphysical factorization scale μ_F .
 - * Separate long distances from short distances.

First guess: leading order predictions.

• First easy naive approach: matrix element calculation at leading order:

$$d\sigma \approx d\sigma^{(0)}$$
 with $d\sigma^{(0)} \equiv q$

• Confrontation between theory and Tevatron data [DØ collaboration (2005, 2008)].

Disagreement between theory and experiment.

• Improvement of the predictions: next-to-leading order calculation.

• Partonic invariant-mass and transverse-momentum distributions at $\mathcal{O}(\alpha_s)$,

$$\begin{split} \frac{\mathrm{d}\sigma}{\mathrm{d}M} &= \mathrm{d}\sigma^{(0)}(M)\,\delta(1-z) + \alpha_s\,\mathrm{d}\sigma^{(1)}(M,z) + \mathcal{O}(\alpha_s^2),\\ \frac{\mathrm{d}^2\sigma}{\mathrm{d}M\,\mathrm{d}p_T} &= \mathrm{d}\sigma^{(0)}(M)\,\delta(p_T)\delta(1-z) + \alpha_s\,\mathrm{d}\sigma^{(1)}(M,z,p_T) + \mathcal{O}(\alpha_s^2)\;,\\ \end{split}$$
here $z = M^2/s.$

w

Second try: next-to-leading order predictions (2).

• Confrontation between theory and Tevatron data [DØ collaboration (2005, 2008)].

* Invariant-mass distribution: good agreement.

- * *p*_T-distribution:
 - Very good agreement in the large- p_T region.
 - ♦ Underestimation in the intermediate- p_T region.
 - ♦ Divergence in the small- p_T region.
- How to improve NLO predictions [in particular for the small-p_T region]?

• Partonic invariant-mass and transverse-momentum distributions at $\mathcal{O}(\alpha_s)$,

$$\begin{split} & \frac{\mathrm{d}\sigma}{\mathrm{d}M} = \mathrm{d}\sigma^{(0)}(M)\,\delta(1-z) + \alpha_s\,\mathrm{d}\sigma^{(1)}(M,z) + \mathcal{O}(\alpha_s^2), \\ & \frac{\mathrm{d}^2\sigma}{\mathrm{d}M\,\mathrm{d}p_T} = \mathrm{d}\sigma^{(0)}(M)\,\delta(p_T)\delta(1-z) + \alpha_s\,\mathrm{d}\sigma^{(1)}(M,z,p_T) + \mathcal{O}(\alpha_s^2) \;, \end{split}$$

where $z = M^2/s$.

- $d\sigma^{(1)}$ contains three different pieces.
 - * Real gluon emission diagrams.
 - * Quark-gluon channels.
 - * Virtual loop contributions.

Investigation of the next-to-leading order contributions (2).

• Amplitude for soft real gluon emission.

$$\begin{split} iM &= g_s T^a \ \bar{v}(k_2) \left[\frac{\not f^*(k_g) \ \left(\not k_g + \not k_2 \right) \Gamma^{\mu}_{qqV}}{2k_2 \cdot k_g} - \frac{\Gamma^{\mu}_{qqV} \ \left(\not k_g + \not k_1 \right) \ f^*(k_g)}{2k_1 \cdot k_g} \right] u(k_1) \\ &\approx g_s T^a \left[\frac{\epsilon^* \cdot k_2}{k_2 \cdot k_g} - \frac{k_1 \cdot \epsilon^*}{k_1 \cdot k_g} \right] \bar{v}(k_2) \ \Gamma^{\mu}_{qqV} u(k_1) \\ &= g_s T^a \left[\frac{\epsilon^* \cdot k_2}{k_0^2 \mathbf{k}_g^0 (1 + \cos \theta)} - \frac{k_1 \cdot \epsilon^*}{k_0^2 \mathbf{k}_g^0 (1 - \cos \theta)} \right] \mathbf{iM}^{\mathrm{Born}} \ . \end{split}$$

Soft and collinear radiation diverges and factorizes.

• Amplitude for the virtual contribution (soft gluons in the loop).

$$\begin{split} iM &= (i g_s^2) \bar{v}(k_2) \int \mathrm{d}k_g \frac{\gamma_{\nu} \left(\not{k}_2 + \not{k}_g \right) \Gamma^{\mu}_{qqV} \left(\not{k}_1 - \not{k}_g \right) \gamma^{\nu}}{k_g^2 \left(2k_1 \cdot k_g \right) \left(2k_2 \cdot k_g \right)} u(k_1) \\ &\approx (i g_s^2) \int \mathrm{d}k_g \frac{k_1 \cdot k_2}{k_g^2 \left(k_1 \cdot k_g \right) \left(k_2 \cdot k_g \right)} iM^{\mathrm{Born}} \\ &= (i g_s^2) \int \mathrm{d}k_g \frac{k_1 \cdot k_2}{k_g^2 \left(k_1^0 \mathbf{k}_g^0 (1 - \cos \theta) \right) \left(k_2^0 \mathbf{k}_g^0 (1 + \cos \theta) \right)} \mathbf{i} \mathbf{M}^{\mathrm{Born}} \end{split}$$

The virtual contributions diverge and factorize.

The problem of the soft and collinear radiation (1).

• Sum of the two contributions.

$$\mathrm{d}\sigma^{(1)} = \mathrm{d}\sigma^{(1,\mathrm{loop})} + \mathrm{d}\sigma^{(1,\mathrm{real})} \ .$$

- * Cancellation of the poles.
- * Infrared behaviour: logarithmic terms in the distributions,

$$\alpha_s \left(\frac{\ln(1-z)}{1-z} \right)_+ \quad \text{ and } \quad \frac{\alpha_s}{p_T^2} \ln \frac{M^2}{p_T^2} \ .$$

* Problems at $z \leq 1$ or small p_T .

The fixed-order theory is unreliable in these kinematical regions.

The problem of the soft and collinear radiation (2).

• Confrontation between theory and Tevatron data [DØ collaboration (2005, 2008)].

- * Invariant-mass distribution:
 - \diamond Convolution with the steeply falling parton densities at large z.
 - ♦ Next-to-leading order calculation reliable.
- * *p*_T-distribution:
 - \diamond Next-to-leading order calculation reliable for the large p_T .
 - ♦ Behaviour in the small- p_T region: $\propto \frac{\alpha_s}{p_T^2} \ln \frac{M^2}{p_T^2}$.

Improvements.

Improvements of the next-to-leading order calculation.

- Matching with a resummation calculation.
 - * Correct treatment of the soft and collinear radiation.
 - * Perturbative method.
 - * Soft and collinear radiation taken into account to all orders.
 - * Parton-level calculation.
- Matching with a parton shower algorithm.
 - * Approximation of the resummation calculation.
 - * Suitable for a proper description of the collision.
 - * Beyond the parton level.

Outline.

2 Resummation and parton showering.

3 Numerical results, including uncertainties, for Z' and supersymmetry at the LHC.

Results 00000000000000

Perturbative QCD in Mellin space (1).

• Doubly-differential cross section - factorization theorem.

$$\begin{split} M^2 \frac{\mathrm{d}^2 \sigma_{AB}}{\mathrm{d}M^2 \mathrm{d}p_T^2} \Big(\frac{M^2}{S_h} \Big) &= \sum_{ab} \int \mathrm{d}x_a \, \mathrm{d}x_b \, \mathrm{d}z \left[x_a \, f_{a/A}(x_a;\mu^2) \right] \left[x_b \, f_{b/B}(x_b;\mu^2) \right] \\ &\times \left[z \, \hat{\sigma}_{ab} \Big(z, M^2, \frac{M^2}{p_T^2}, \frac{M^2}{\mu^2} \Big) \, \delta \Big(\frac{M^2}{S_h} - x_a x_b z \Big) \right] \,. \end{split}$$

- * We set $\mu_F = \mu_R = \mu$ to simplify.
- * S_h is the hadronic center of mass energy.
- * $\hat{\sigma}_{ab}$ is the hard-scattering function.
- * Beware: slight change of notations.
- Mellin transformation of a function *F* with respect to a variable *X*.

$$F(N) = \int_0^1 \mathrm{d}X \ X^{N-1}F(X) \ .$$

* *N* is the variable conjugate to *X*.

Perturbative QCD in Mellin space (2).

• Mellin transform of the hadronic cross section with respect to M^2/S_h .

$$M^2 \frac{\mathrm{d}^2 \sigma_{AB}}{\mathrm{d}M^2 \mathrm{d}p_T^2} \left(N-1\right) = \sum_{ab} \left[f_{a/A}(N;\mu^2) \right] \left[f_{b/B}(N;\mu^2) \right] \left[\hat{\sigma}_{ab} \left(N,M^2,\frac{M^2}{p_T^2},\frac{M^2}{\mu^2}\right) \right].$$

* The convolution is now a standard product.

• Mass factorization and the partonic cross section.

$$M^{2} \frac{\mathrm{d}^{2} \sigma_{ab}}{\mathrm{d} M^{2} \mathrm{d} p_{T}^{2}} \left(N-1\right) = \sum_{cd} \left[\phi_{c/a}(N;\mu^{2})\right] \left[\phi_{d/b}(N;\mu^{2})\right] \left[\hat{\sigma}_{cd}\left(N,M^{2},\frac{M^{2}}{p_{T}^{2}},\frac{M^{2}}{\mu^{2}}\right)\right].$$

- * We introduce the parton-in-parton distributions $\phi(x, \mu)$.
 - $\diamond~$ They are defined at fixed longitudinal momentum fraction x.
 - ♦ They contain the collinear singularities of $d^2\sigma_{ab}$ for $p_T \neq 0$.
- * The hard-scattering function $\hat{\sigma}_{cd}$ is then **infrared-safe**.
- * Factorization scheme: finite pieces of $\hat{\sigma}_{cd}$ in the densities ϕ .
- * **MS**-scheme: the densities are pure divergences (up to $\ln(4\pi) \gamma_E$).

Perturbative QCD in Mellin space (3).

- Evolution equations [Altarelli, Parisi (1977)].
 - * The evolution of the parton-in-parton densities are governed by:

$$\frac{\partial \phi_{c/a}}{\partial \ln \mu^2} (N, \mu^2) = \sum_b P_{cb}(N, \alpha_s(\mu^2)) \phi_{b/a}(N, \mu^2) ,$$

- * We introduce the splitting functions P_{cb} .
- * The splitting functions can be calculated perturbatively.

$$P_{cb}(N,\alpha_s(\mu^2)) = \sum_{n=1}^{\infty} \alpha_s^n(\mu^2) P_{cb}^{(n)}(N) .$$

• The QCD evolution operator $E_{ab}(N, \mu^2, \mu_0^2)$, solution of

$$\frac{\partial E_{ab}}{\partial \ln \mu^2} \left(N, \mu^2, \mu_0^2 \right) = \sum_c P_{ac} \left(N, \alpha_s(\mu^2) \right) \, E_{cb} \left(N, \mu^2, \mu_0^2 \right) \, .$$

* Allow to define ϕ in a compact form.

$$\phi_{c/a}(N,\mu^2) = \sum_{b} E_{cb} (N,\mu^2,\mu_0^2) \phi_{b/a}(N,\mu_0^2) .$$

* Leading order: *E*_{ab} written in an exponential form [Furmanski, Petronzio (1982)].

Resummation philosophy (1).

- Inputs to compute (differential) cross sections.
 - * Parton densities.
 - ◊ Fitted from experiment.
 - ♦ Universal.
 - ◊ Obey to Altarelli-Parisi equations.
 - * Hard-scattering function.
 - ◊ Perturbatively computable.
 - ◊ Ultraviolet divergences: renormalization.
 - ♦ Infrared divergences: Bloch-Nordsieck [Bloch, Nordsieck (1937)].
- The next-to-leading order quantity $\hat{\sigma}_{ab}^{(1)}$.
 - * Infrared safe.
 - * Definite logarithmic structure: issues at phase space boundaries.
 - $\diamond~$ Each term is thus either soft or collinear.
 - \diamond Remark: $d^2 \sigma_{AB}/dM^2 dp_T^2$ is then infrared sensitive.
 - ♦ Can be resummed to all orders.

Resummation philosophy (2).

- We consider an infrared sensitive quantity *R*.
 - * Depends on a hard scale *M*.
 - * Depends on a scale *m* measuring the distance from the critical region.
 - * Contains large ratios of scales.
- Resummation to all orders.

$$R(M^2, m^2) = H(M^2/\mu^2) S(m^2/\mu^2)$$

- * Separation of the two scales \equiv refactorization.
- * Remark: refactorization holds in conjugate spaces (e.g., Mellin space).
- * S and H obey to

$$\frac{\partial H}{\partial \ln \mu^2} = -\frac{\partial S}{\partial \ln \mu^2} = \gamma_S(\mu^2) \; .$$

* Choice of $\mu = M$, introduction of the Sudakov form factor.

$$\mathsf{R}(\mathsf{M}^2,\mathsf{m}^2) = \mathsf{H}(1)\mathsf{S}(1) \exp\left[-\int_{\mathsf{m}^2}^{\mathsf{M}^2} \frac{\mathrm{d} q^2}{q^2} \gamma_\mathsf{S}(q^2)\right]\,.$$

* No large ratios of scale anymore.

The threshold resummation formalism (1).

- Reorganization of the $\alpha_s^n(\ln^m(1-z)/1-z)_+$ terms (with $m \le 2n-1$).
 - * In Mellin space: $\ln^{m+1} N$.
 - * Important in the $N \to \infty$ limit.
- Off-diagonal splitting functions negligible.
 - * Subdominant in the large N limit.
 - * The p_T -integrated partonic cross section can then be written as

$$M^{2} \frac{\mathrm{d}\sigma_{ab}}{\mathrm{d}M^{2}} \left(N-1\right) = \left[\phi_{a/a}(N;\mu^{2})\right] \left[\phi_{b/b}(N;\mu^{2})\right] \left[\hat{\sigma}_{ab}\left(N,M^{2},\frac{M^{2}}{\mu^{2}}\right)\right] + \mathcal{O}\left(\frac{1}{N}\right).$$

• Refactorization [Sterman (1987)].

$$\begin{split} M^2 \frac{\mathrm{d}\sigma_{ab}}{\mathrm{d}M^2} \left(N - 1 \right) &= \left[\psi_{a/a}(N;M^2) \right] \left[\psi_{b/b}(N;M^2) \right] S_{ab} \left(N, \frac{M^2}{\mu^2} \right) \\ &\times \left[H_{ab} \left(M^2, \frac{M^2}{\mu^2} \right) \right] + \mathcal{O} \left(\frac{1}{N} \right) \,. \end{split}$$

* Factorization of the *N*-dependence.

The threshold resummation formalism (2).

• Refactorization [Sterman (1987)].

$$\begin{split} M^2 \frac{\mathrm{d}\sigma_{ab}}{\mathrm{d}M^2} \big(N - 1 \big) &= \left[\psi_{\mathbf{a}/\mathbf{a}}(\mathbf{N};\mathbf{M}^2) \right] \left[\psi_{\mathbf{b}/\mathbf{b}}(\mathbf{N};\mathbf{M}^2) \right] \mathbf{S}_{\mathbf{a}\mathbf{b}} \big(\mathbf{N},\frac{\mathbf{M}^2}{\mu^2} \big) \\ &\times \left[\mathbf{H}_{\mathbf{a}\mathbf{b}} \Big(\mathbf{M}^2,\frac{\mathbf{M}^2}{\mu^2} \Big) \right] + \mathcal{O} \Big(\frac{1}{N} \Big) \;. \end{split}$$

- * H_{ab} organizes infrared-safe coefficients (independent of N).
 - ♦ Perturbatively computable.
- * The parton-in-parton distributions $\psi_{i/i}$.
 - ♦ Dependence on the energy (not on the momentum) fraction.
 - ◊ Satisfy

$$\frac{\partial \psi_{i/i}}{\partial \ln \mu^2} \left(\mathsf{N}, \mu^2 \right) = \gamma_i \left(\alpha_{\mathfrak{s}}(\mu^2) \right) \, \psi_{i/i} \left(\mathsf{N}, \mu^2 \right) \, ,$$

- $\diamond \gamma_i \equiv N$ -independent parts of the splitting functions.
- ◊ Perturbatively computable.
- * Large-angle soft gluon emission is included in S_{ab} .
 - ♦ Computable in the eikonal approximation.

The threshold resummation formalism (3).

• Mass factorization.

$$\begin{split} \hat{\sigma}_{ab}\Big(N, M^2, \frac{M^2}{\mu^2}\Big) &= H_{ab}\Big(M^2, \frac{M^2}{\mu^2}\Big) \\ &\qquad \times \frac{\psi_{a/a}(N; M^2)\psi_{b/b}(N; M^2)}{\phi_{a/a}(N; \mu^2)\phi_{b/b}(N; \mu^2)} S_{ab}\big(N, \frac{M^2}{\mu^2}\big) + \mathcal{O}\Big(\frac{1}{N}\Big) \;. \end{split}$$

- * Evolution of the parton densities: can be solved in the large N limit.
- * The eikonal function S_{ab} exponentiates [Gatheral (1983)].
- Exponentiation.

$$\hat{\sigma}_{ab}\left(N,M^2,\frac{M^2}{\mu^2}\right) = H_{ab}\left(M^2,\frac{M^2}{\mu^2}\right)\exp\left[G_{ab}\left(N,M^2,\frac{M^2}{\mu^2}\right)\right] + \mathcal{O}\left(\frac{1}{N}\right) \,.$$

* The Gab-function can be rewritten in terms of radiation factors.

$$G_{ab} = \ln \Delta_a + \ln \Delta_b + \ln \Delta_{ab}$$
.

The threshold resummation formalism (4).

• The radiation factors are integrals of the running coupling constant.

$$\begin{split} \ln \Delta_i \big(N, M^2, \frac{M^2}{\mu^2}\big) &= \int_0^1 \mathrm{d}z \frac{z^{N-1}-1}{1-z} \int_{\mu^2}^{(1-z)^2 M^2} \frac{\mathrm{d}q^2}{q^2} A_i(\alpha_s(q^2)) \ ,\\ \ln \Delta_{ab} \big(N, M^2, \frac{M^2}{\mu^2}\big) &= \int_0^1 \mathrm{d}z \frac{z^{N-1}-1}{1-z} D_{ab} \big(\alpha_s((1-z)^2 M^2)\big) \ . \end{split}$$

- * The function A_i collects soft and collinear radiation.
- * The function D_{ab} collects large-angle soft-radiation.
- * All functions can be computed **perturbatively**.
- Final resummation formula.

$$\hat{\sigma}_{ab}\Big(N,M^2,\frac{M^2}{\mu^2}\Big) = \mathcal{H}_{ab}\Big(M^2,\frac{M^2}{\mu^2}\Big) \exp\left[\mathcal{G}_{ab}\big(N,M^2,\frac{M^2}{\mu^2}\big)\right] + \mathcal{O}\Big(\frac{1}{N}\Big) \ .$$

- * All non-logarithmic pieces have been absorbed in the hard function $\mathcal{H}.$
- Improvement 1: inclusion (and exponentiation) of terms in 1/N in the diagonal splitting functions [Krämer, Laenen, Spira (1998)].
- Improvement 2: inclusion (and exponentiation) of terms in 1/N in the non-diagonal splitting functions [Kulesza, Sterman, Vogelsang (2002)].

Three resummation formalisms.

- Based on similar factorization properties.
- p_T-resummation [Catani, de Florian, Grazzini (2001); Bozzi, Catani, de Florian, Grazzini (2006)]
 - * Universal formalism \equiv process-independent Sudakov form factor.
 - * Resums $\frac{\alpha_s}{p_T^2} \ln \frac{M^2}{p_T^2}$.
- Threshold resummation [Sterman (1987); Catani, Trentadue (1989,1991)]

* Resums
$$\left(\frac{\ln(1-z)}{1-z}\right)_+$$

- Joint resummation [Bozzi, BenjF, Klasen (2008)]
 - * Universal formalism \equiv process-independent Sudakov form factor.
 - * Resums both types of logarithms.

The resummed component (1).

• Based on factorization properties.

- * Holds in non-physical conjugate spaces.
- * Mellin N-space (N conjugate to M^2/S_h).
- * Impact parameter b (conjugate to p_T) \leftrightarrow joint/ p_T resummation.

$$d\sigma_{AB}^{(\text{res})}(N-1,b) = \sum_{a,b} f_{a/A}(N) f_{b/B}(N) \mathcal{W}_{ab}(N,b),$$
$$\mathcal{W}_{ab}(N,b) = \mathcal{H}_{ab} \exp \left\{ \mathcal{G}_{ab}(N,b) \right\}.$$

- The *H*-coefficient:
 - * Contains real and virtual collinear radiation, hard contributions.
- The Sudakov form factor \mathcal{G} :
 - * Contains the soft-collinear radiation.

The resummed component (2).

$$\mathcal{W}_{ab}(N,b) = \mathcal{H}_{ab} \exp \left\{ \mathcal{G}_{ab}(N,b) \right\}.$$

- The *H*-coefficient:
 - * Contains real and virtual collinear radiation, hard contributions.
 - * Can be computed perturbatively as series in α_s , from fixed-order results.
 - * Is process-dependent.
- The Sudakov form factor \mathcal{G}_{ab} :
 - * Contains the soft-collinear radiation.
 - * Can be computed perturbatively as series in $\alpha_s \log$.
 - * Is process-independent (universal).
 - * Contains the full color and spin structure.

Matching to the fixed order (1).

- Fixed-order calculations.
 - * Reliable far from the critical kinematical regions.
 - * Spoiled in the critical regions.
- Resummation.
 - * Needed in the critical regions.
 - * Not justified far from the critical regions.
- Intermediate kinematical regions:
 - * Both fixed order and resummation contribute.

Information from both fixed order and resummation is required. \Rightarrow consistent matching procedure.

Matching to the fixed order (2).

• Matching procedure:

- * Addition of both resummation and fixed-order results.
- * Subtracting the expansion in α_s of the resummed result.
- * No double-counting of the logarithms.

$$\mathrm{d}\sigma = \mathrm{d}\sigma^{(\mathrm{F.O.})} + \mathrm{d}\sigma^{(\mathrm{res})} - \mathrm{d}\sigma^{(\mathrm{exp})}.$$

• Effects of the matching procedure:

- * Far from the critical regions, $d\sigma^{(res)} \approx d\sigma^{(exp)} \equiv$ perturbative theory.
- * In the critical regions, $d\sigma^{(F.O.)} \approx d\sigma^{(exp)} \equiv pure$ resummation.
- * In the intermediate regions: **both contribute**.

Results 00000000000000

Parton showers (1).

• The parton splitting factorizes \Rightarrow iterative splitting.

where t is the ordering variable and z the momentum fraction.

- Ingredient 1: Altarelli-Parisi splitting kernels $P_{ba}(z)$.
- Ingredient 2: No emission probability the Sudakov form factor.
 - * Conservation of probability for the branching of a parton:

$$\begin{split} 1 &= P_{\rm no\ emis}(t+{\rm d}t,t) + P_{\rm emis}(t+{\rm d}t,t) \\ &= P_{\rm no\ emis}(t+{\rm d}t,t) + \frac{{\rm d}t}{t} \sum_b \int {\rm d}z \frac{\alpha_s(t)}{4\pi} P_{ab}(z) \end{split}$$

* Solving the equation defines the Sudakov form factor,

$$\Delta(\mathbf{t}_1, \mathbf{t}_2) = P_{\text{no emis}}(t_1, t_2) = \exp\left[-\int_{t_1}^{t_2} \frac{\mathrm{d}t}{t} \sum_b \int \mathrm{d}z \frac{\alpha_s}{4\pi} P_{ba}(z)\right] \,.$$

Results

Parton showers (2).

Evolution equation for the parton a to the cut-off scale t_0 .

$$\phi_{a}(t,E) = \Delta_{a}(t,t_{0}) + \sum_{b} \int_{t_{0}}^{t} \frac{\alpha_{s}(t')}{4\pi} \frac{\mathrm{d}t'}{t'} \mathrm{d}z \,\Delta_{a}(t,t') \,P_{ab}(z) \,\phi_{b}(t',zE) \,\phi_{c}(t',(1-z)E)$$

• Derivation of a parton shower algorithm.

* Ordered Markov chain (t-variable).

$$Q_0^2 \ll t_1 \ll t_2 \ll \ldots \ll t_N \ll Q^2$$

- * Choice of t: different shower algorithms.
- Limitations.
 - * Leading logarithms,
 - * Large number of colors,
 - * Collinear and/or soft-collinear radiation.
- $\bullet \ \ \, Improvements \ \ require \ \ matrix \ \ exponentiation \ \ \Rightarrow \ \ soft-gluon \ \ resummation.$

Outline.

Motivation for precision calculations.

Resummation and parton showering.

3 Numerical results, including uncertainties, for Z' and supersymmetry at the LHC.

Resummation vs. Tevatron data.

• Confrontation between theory and Tevatron data $[D\phi \text{ collaboration (2005, 2008)}]$.

- Invariant-mass distribution: good agreement. (no change with respect to next-to-leading order).
- *p_T*-distribution: good agreement. (big improvement with respect to next-to-leading order).

Grand Unified Theories and Z' bosons.

- Grand Unified Theories: generalities. •
 - Unification of the Standard Model gauge groups:

 $\mathbf{G} \supset \mathbf{SU}(3)_{\mathbf{C}} \times \mathbf{SU}(2)_{\mathbf{I}} \times \mathbf{U}(1)_{\mathbf{Y}}$.

Results

- Breaking to the SM at high energy scale:
 - \diamond Possible appearance of additional U(1) symmetries.
 - ♦ Extra neutral gauge bosons Z'.

• Considered theoretical model [Green, Schwarz (1984); Hewett, Rizzo (1989)].

* Ten-dimensional string theories $E_8 \times E_8$:

- ♦ Anomaly-free and contains chiral fermions.
- \diamond Compactified to E_6 .
- Breaking to the SM gauge groups

$$E_6 \rightarrow SO(10) imes U(1)_{\psi}$$

- $\rightarrow SU(5) \times U(1)_{\chi} \times U(1)_{\psi}$
- \rightarrow SU(3)_C × SU(2)_I × U(1)_Y × U(1)_Y × U(1)_y.

Additional bosons Z_{ψ} and $Z' \equiv Z_{\chi}$.

С

Resummation for Z' production at the LHC.

[BenjF, Klasen, Ledroit, Li, Morel (2008)]

- Scenario: production of a Z' of 1 TeV at the LHC, at 14 TeV.
- Mass-spectrum normalized to leading order.
 - * Resummation/NLO: additional increase of the K-factor (few percents).
 - * Resummation effects reduced due to parton densities.
 - * Resummation formalism choice: small uncertainties (few percents).
- Transverse-momentum distribution:
 - * Resummation/NLO: finite results at small p_T ; peak around 10 GeV.
 - * Good agreement between the two resummation formalisms.

QCD resummation for Drell-Yan-like processes Beyond the Standard Model

Benjamin Fuks - U. Mainz - 19.07.2011 - 34

Results ○00●00○○○○○○ Conclusions

о с

Uncertainties: scale variations.

[BenjF, Klasen, Ledroit, Li, Morel (2008)]

- Scenario: production of a Z' of 1 TeV at the LHC, at 14 TeV.
- Total cross section (900 GeV $\leq M \leq 1200$ GeV).
 - * Leading order: full dependence related to μ_F (~ 7%).
 - * Next-to-leading order: introduction of μ_R and the qg channel (~ 17%).
 - * Resummation: reduction of scale dependence (\sim 9%).

Uncertainties: parton densities.

- Scenario: production of a Z' of 1 TeV at the LHC, at 14 TeV.
- CTEQ vs. MRST.
 - * p_T -spectrum: similar shapes but a bit harder for MRST.
 - * Mass-spectrum: different shapes.
- Variations along 20 directions for the CTEQ densities.
 - * Variations along the PDF fits: modest uncertainties ($\sim 10\%$).
 - * Similar to scale dependence.

Non-perturbative effects.

- Important non-perturbative effects in the p_T -distributions.
 - * Intrinsic p_T of the partons inside the hadrons.
 - * Modification of the Sudakov form factor,

$$\mathcal{G}(N,b) \rightarrow \mathcal{G}(N,b) + F_{ab}^{\mathrm{NP}}.$$

• Form factors [Ladinsky, Yuan (94); Landry, Brock, Nadolsky, Yuan (03); Konyshev, Nadolsky (06)].

* Obtained from experimental data (fits) and assumed universal.

 $\bullet~$ Non-perturbative effects under good control for $p_T > 5~GeV.$

Results

Monte Carlo and resummation for BSM processes.

• Soft and collinear radiation = Sudakov form factor

- * Parton showers in general: leading logarithms, color,...
- * Momentum conservation at each branching: (leading logs)+, e.g. PYTHIA.
- * Resummation: next-to-leading logarithms.
- Matched with matrix elements.
 - * Monte Carlo codes in general: leading order.
 - * Sometimes next-to-leading order: e.g. MC@NLO and POWHEG.
 - * Resummation: next-to-leading order.
- Comparison: resummation vs. PYTHIA vs. MC@NLO.
 - * **PYTHIA**: virtuality-ordered showers; nice process library.
 - * MC@NLO: angular-ordered showers; precision MC generator.
 - Resummation: best precision.

[BenjF, Klasen, Ledroit, Li, Morel (2008)]

- 1 TeV Z'; PYTHIA (LO/LL+), MC@NLO (NLO/LL), resummation (NLO/NLL).
- Mass-spectrum normalized to leading order:
 - * PYTHIA (*power shower*): mass-spectrum multiplied by a *K*-factor of 1.26.
 - * Good agreement between MC@NLO and resummation.
- Transverse-momentum distribution:
 - * PYTHIA spectrum much too soft, peak not well predicted.
 - * Good agreement between MC@NLO and resummation.

Results

- High energy extension to Standard Model.
- Symmetry between fermions and bosons.

 $Q|\text{Boson}\rangle = |\text{Fermion}\rangle$ $Q|\text{Fermion}\rangle = |\text{Boson}\rangle$ where Q is a SUSY generator.

The MSSM: one single supersymmetric (SUSY) generator Q. ۲

The MSSM: one SUSY partner for each SM particle.

- * Quarks ⇔ squarks.
- Leptons \Leftrightarrow sleptons.
- Gauge/Higgs bosons \Leftrightarrow gauginos/higgsinos \Leftrightarrow charginos/neutralinos.
- Gluon ⇔ gluino.

Some features of the MSSM.

- Introduction of the SUSY particles in the theory.
 - * Solution to the hierarchy problem (stabilization of the Higgs mass).
 - * Gauge coupling unification at high energy.
 - * **Dark matter candidate** \Leftrightarrow lightest SUSY particle stable and neutral.
- No SUSY discovery until now!
 - * SUSY must be broken.
 - * SUSY masses at a higher scale than Standard Model (SM) masses.
 - * More than 100 new free parameters.
 - * Simplified benchmark scenarios:
 - ♦ Minimal supergravity (mSUGRA).
 - $\diamond~$ Gauge-mediated SUSY-breaking (GMSB).
 - ٥ ...

• SUSY scenario: slepton masses \approx 100-200 GeV.

• Resummation effects:

- * Finite results at small p_T .
- * Matching: important effects at intermediate p_T .
- * Small M: $d\sigma^{(res)} \approx d\sigma^{(exp)} \equiv$ perturbative theory.
- * Large *M*: $d\sigma^{(F.O.)} \approx d\sigma^{(exp)} \equiv$ pure resummation.

Uncertainties: chargino-neutralino associated production.

[[]Debove, BenjF, Klasen (2011)]

Uncertainties: chargino-neutralino associated production.

• Scenario.

- * $\,pprox\,$ 180 GeV gauginos.
- * LHC collider (10 TeV & 14 TeV).

• *p*_T-**spectrum**

- * Next-to-leading logarithms.
- * $\mathcal{O}(\alpha_s)$ fixed-order.
- * Small p_T : expansion \approx fixed-order.
- * Large p_T : expansion \approx resummation.
- * Intermediate *p*_T: enhancement.
- Scale dependence $(M/2 \le \mu_R = \mu_F \le 2M)$.
 - * Reduction of the uncertainties.
 - * Less than 5% for $p_T > 5$ GeV.
- Parton densities dependence (44 CTEQ sets).
 - * 4-5% uncertainties for all p_T .
 - * Similar to weak boson production.
- Non perturbative effects at low p_T.
 - * **Under control** for $p_T > 5$ GeV.
- Uncertainties under control for $p_T > 5$ GeV.

Comparison: PYTHIA and p_T -resummation.

Scenario.

pprox 110 GeV gauginos.

Results

- Tevatron collider
- PYTHIA predictions.
 - * Used for SUSY experimental analyses.
 - Leading log Sudakov form factor.
 - Two tunes
 - ◊ CDF-AW.
 - ◊ Our tune AW'
- Two set of resummed predictions.
 - Leading logaritmic approximation.
 - Next-to-leading logaritmic results.
- PYTHIA results.
 - Improves the LL picture. *
 - **Intrinsic** p_T helps to reproduce NLL.
 - **Underestimation** for intermediate p_T .
 - Direct impact for experimental analyses.

_

Outline.

Motivation for precision calculations.

2 Resummation and parton showering.

3 Numerical results, including uncertainties, for Z' and supersymmetry at the LHC.

Summary - conclusions.

• Soft and collinear radiation:

- * Large logarithmic corrections in p_T and invariant-mass spectra.
- * Need for resummation (or parton showers).

• p_T, threshold and joint resummations have been implemented.

- * Reliable perturbative results.
- * Correct quantification of the soft-collinear radiation.
- * Important effects, even far from the critical regions.
- * Uncertainties from scales and parton densities under good control.
- * Reduced dependence on non-perturbative effects.
- Comparison with Monte Carlo generators
 - * Significant shortcomings in normalization and shapes for PYTHIA.
 - * MC@NLO reaches (almost) the same precision level as resummation. BUT: easier implentation in the analysis chains of any experiment.