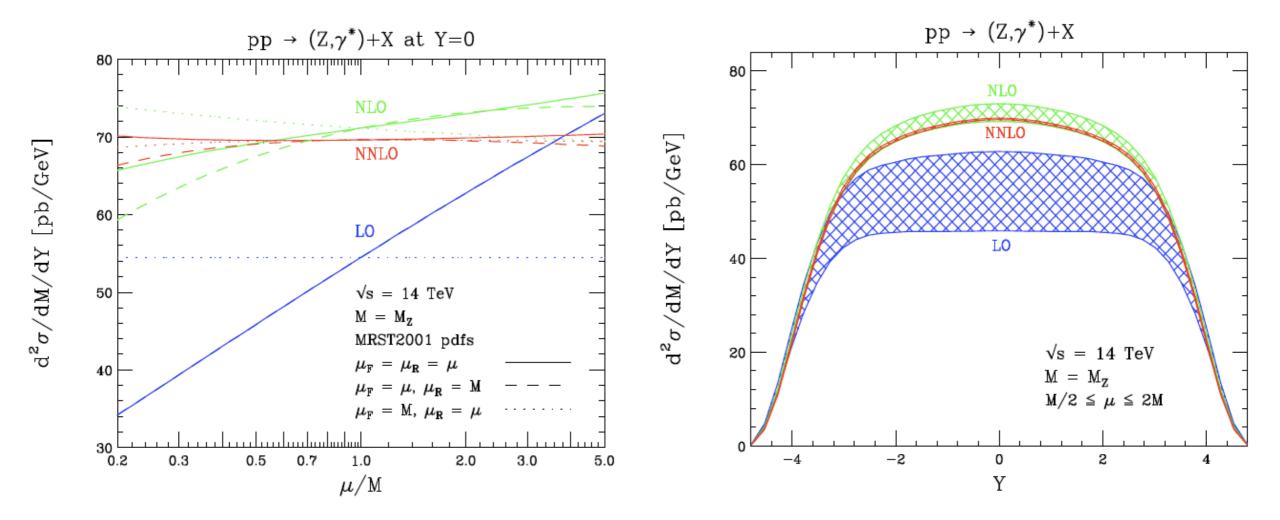
DISENTANGLING THE OVERLAPPING SINGULARITIES OF NNLO AMPLITUDES

ACHILLEAS LAZOPOULOS

in collaboration with Babis Anastasiou and Franz Herzog

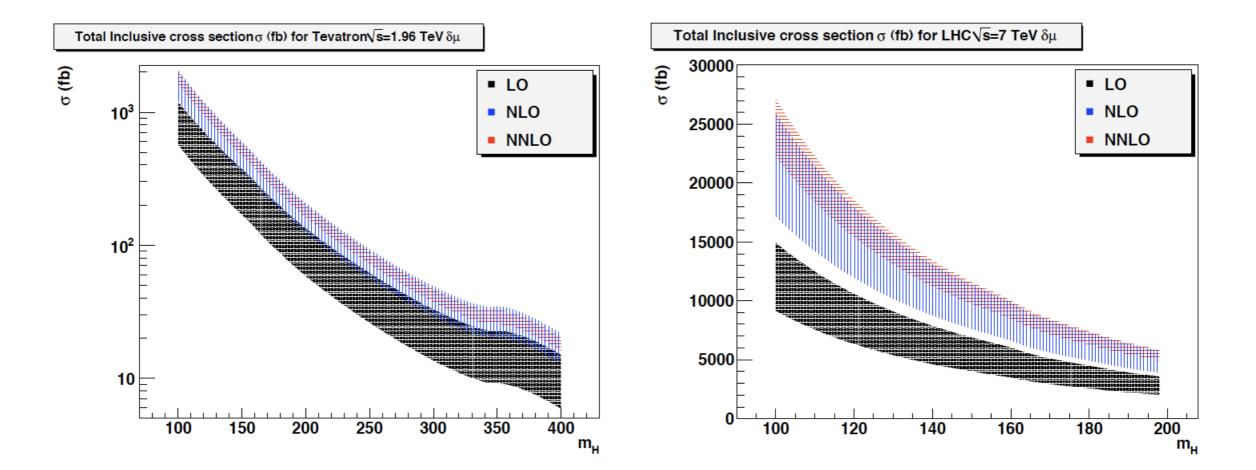
Mainz Theorie Palaver, 26.10.2010

Motivation: why bother with NNLO fixed order calculations ?



Z boson production: central rapidity bin with varying scales and rapidity distribution for the LHC [Anastasiou, Dixon, Melnikov, Petriello, hep-ph/0312266]

Why NNLO: to stabilize cross sections with respect to scale variation



total uncertainty due to scale variation $(\mu_F = \mu_R \in [m_H/4, m_H])$.

Figure 3: Total inclusive cross section for Tevatron ($\sqrt{s} = 1.96$ TeV). The bands represent Figure 7: Total inclusive cross section for LHC ($\sqrt{s} = 7$ TeV). The bands represent the total uncertainty due to scale variation $(\mu_F = \mu_R \in [m_H/4, m_H])$.

Plots produced with fehipro

Higgs @NNLO: Anastasiou, Melnikov, Petriello hep-ph/0409088, hep-ph/0501130. Catani, Grazzini, hep-ph/0703012, 0801.3232, ...

Why NNLO: smaller theoretical uncertainty for measured quantities.

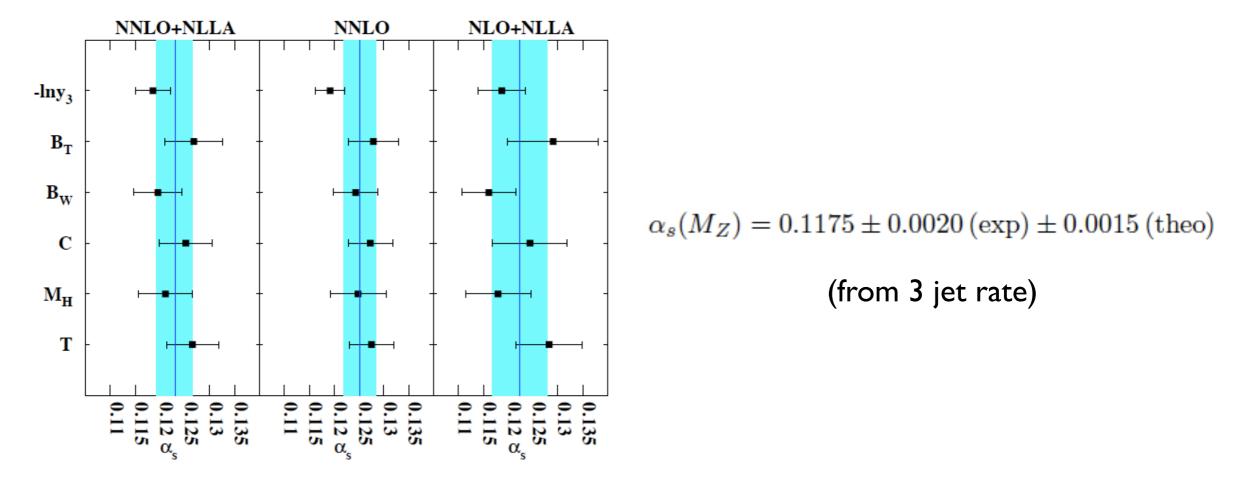


Figure 6: The measurements of the strong coupling constant α_s for the six event shapes, at $\sqrt{s} = M_Z$, when using QCD predictions at different approximations in perturbation theory. The shaded area corresponds to the total uncertainty, as in Fig. 5.

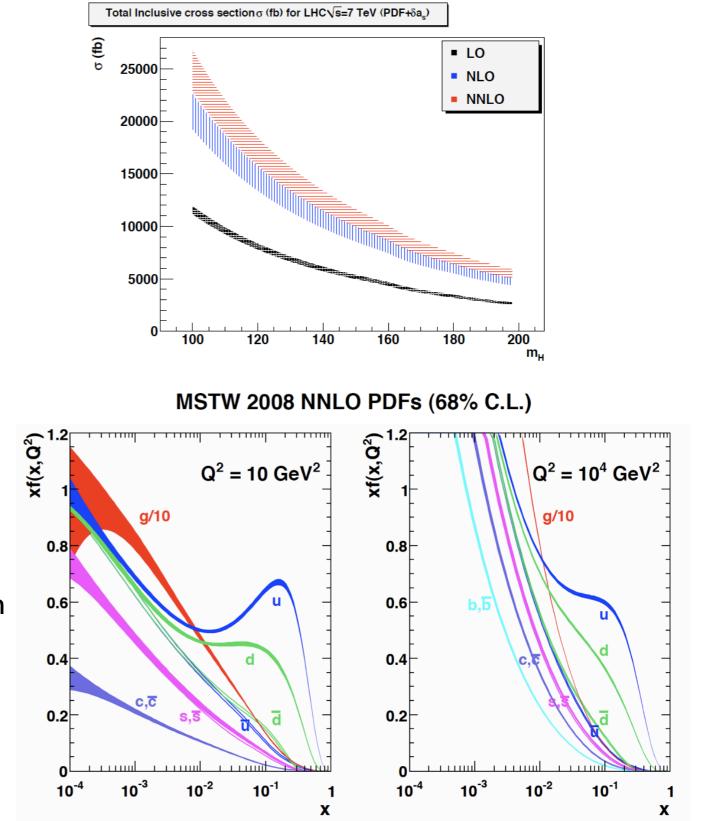
$$a_s \text{ from } e^+e^- \to 3j$$

Dissertori, Gehrmann-deRidder, Gehrmann, Glover, Heinrich, Luisoni, Stenzel 0910.4283, 0906.3436

 $e^+e^- \rightarrow 3j$ Gehrmann-de Ridder, Gehrmann, Glover, Heinrich 0711.4711, Weinzierl 0807.3241

Why NNLO: To constrain the gluon PDF

- Gluon PDF uncertainty is critical
- MSTW2008 include Run II jet data in their NNLO PDF fit assuming that the unknown NNLO corrections are small
- Probably legitimate, but other groups prefer to wait for the the full NNLO calculation.
- Further jet data would constrain the ubiquitous gluon pdf



NNLO necessary ingredients

- NNLO splitting functions (Moch, Vermaseren, Vogt)
- NNLO PDFs (MSTW2008, ABKM2009, well restrained at interesting region)
- Matrix elements for double virtual, virtual-real, virtual squared, double real
- Suitable parameterization for double real
- Fully differential cross-sections
- Reasonably fast final product code.

NNLO strategies for double virtual

- Reduction to master integrals by ibp equations (note that a generic basis of masters is not known at two loops).
- Calculate the master integrals analytically or numerically by
 - ★ Mellin-Barnes
 - \star Differential equations
 - ★ Sector decomposition

NNLO strategies for double real

- Antenna subtraction
- qT subtraction
- NNLO subtraction along the lines of NLO
- NNLO subtraction + sector decomposition
- Sector decomposition

The "bottleneck"

In both double virtual and double real one has to deal with integrals with a complicated singularity structure that has to be factorized Singularity structure: the simplest possible case

$$\int \frac{dx_1 \dots dx_N}{x_1^{1-\epsilon}} \frac{N(x_1, \dots, x_n)}{D(x_1, \dots, x_n)}$$

Easy: we can subtract the singularity and Taylor expand over epsilon

$$I = \int_{0}^{1} d^{N} \vec{x} \frac{f(x_{1}, x_{2}, \dots, x_{N}) - f(0, x_{2}, \dots, x_{N})}{x_{1}} \left[\sum_{n=0}^{\infty} \frac{\epsilon^{n}}{n!} \log^{n}(x_{1}) \right] \\ + \frac{1}{\epsilon} \int_{0}^{1} d^{N} \vec{x} f(0, x_{2}, \dots, x_{N}).$$

Singularity structure: the next-to-simplest case

$$\int \frac{dx_1 \dots dx_N}{x_1^{1-\epsilon} \dots x_k^{1-\epsilon}} \frac{N(x_1, \dots, x_n)}{D(x_1, \dots, x_n)}$$

We can define the + distribution expansion

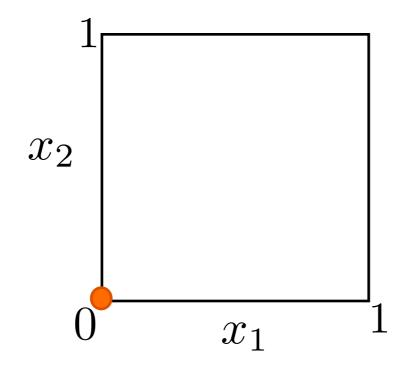
$$x_i^{-1+a_i\epsilon} = \frac{\delta(x_i)}{a_i\epsilon} + \sum_{n=0}^{\infty} \frac{a_i^n \epsilon^n}{n!} \left[\frac{\log^n(x_i)}{x_i} \right]_+$$

and expand the integrand for each variable

Singularity structure: overlapping singularity

$$\int dx_1 dx_2 \frac{1}{(x_1 + cx_2)^{2-\epsilon}}$$

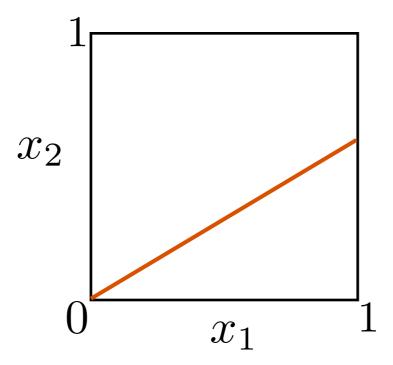
We have here an overlapping singularity at $\,x_1=0\,\,\,x_2=0\,\,$



Singularity structure: line singularity

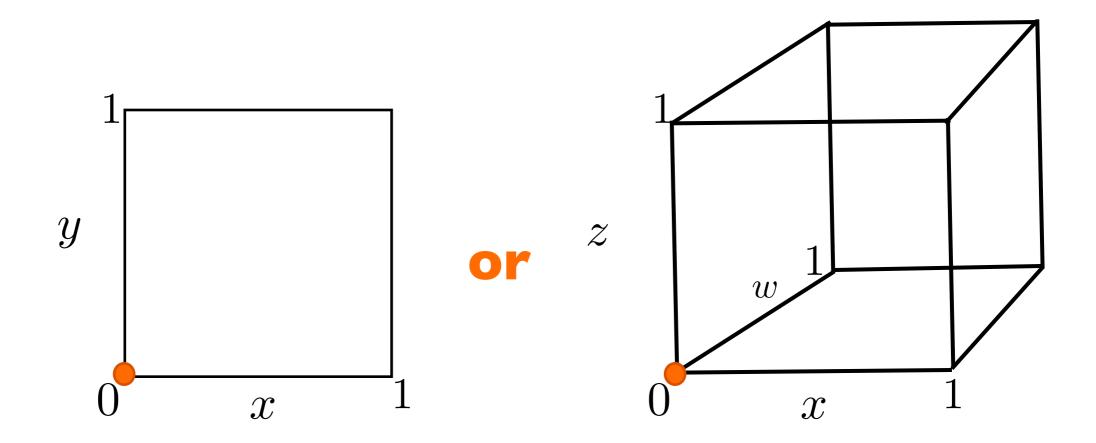
$$\int dx_1 dx_2 \frac{1}{(x_1 - cx_2)^{2-\epsilon}}$$

The integral is singular over a line in the integration region



Singularity structure: entangled overlapping singularity

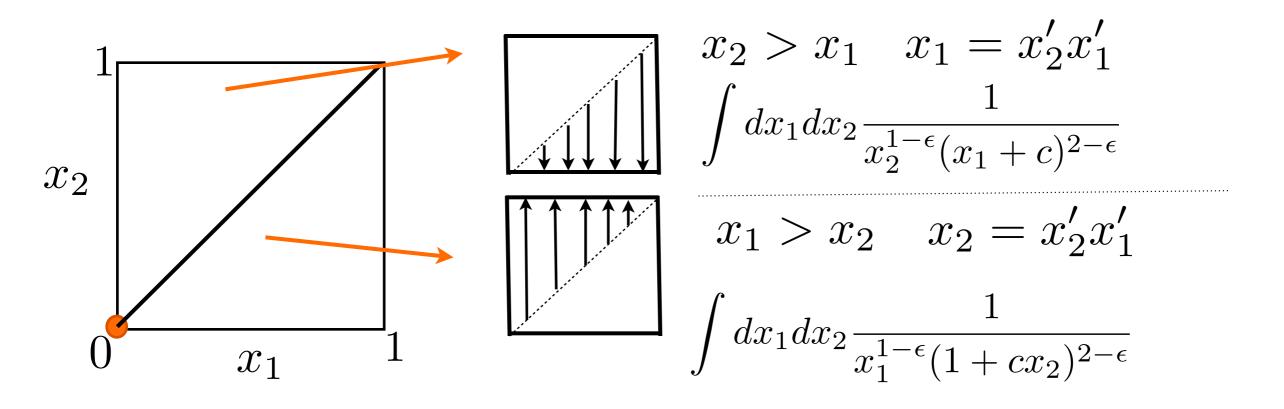
$$\int_0^1 dx \, dy \, dz \, dw \frac{(xyzw)^\epsilon}{(x+y(z+w))^2}$$



Factorizing singularities with sector decomposition

Sector decomposition employed by Hepp, but modern iterative version introduced by Binoth and Heinrich hep-ph/0305234

$$\int dx_1 dx_2 \frac{1}{(x_1 + cx_2)^{2-\epsilon}}$$



This can be iterated ad nauseam, until all singularities are factorized

Factorizing singularities with sector decomposition

+

- Well established algorithm
- Works for many loops
- Works even better for real emission

- Deeply nested decompositions lead to proliferation of sectors
- Numerical cancelations induced as the number of sectors grows

Threshold singularities cannot be removed by sector decomposition, but can be avoided numerically by contour deformation A.L., Melnikov, Petriello hep-ph/0703273 ,Anastasiou, Beerli, Daleo hep-ph/0703282 **NEW**: factorizing singularities with non-linear mappings

Factorizing singularities with non-linear mappings

$$I = \int_0^1 dx_1 dx_2 \frac{J(x_1, x_2)}{(x_1 + x_2)^{2 + \epsilon}}$$
$$x_2 = \frac{x_1 x_2'}{x_1 + (1 - x_2')} \quad \frac{\partial x_2}{\partial x_2'} = \frac{x_1 (1 + x_1)}{[x_1 + (1 - x_2')]^2}$$

$$I = \int_0^1 dx_1 dx_2' \frac{(1 - x_2' + x_1)^{\epsilon} J(x_1, \frac{x_1 x_2'}{x_1 + 1 - x_2'})}{x_1^{1 + \epsilon} (1 + x_1)^{1 + \epsilon}}$$

$$I = \int \frac{d^d k}{i\pi^{\frac{d}{2}}} \frac{1}{k^2(k+p_1)^2(k+p_1+p_2)^2(k+p_1+p_2+p_3)^2}$$

$$I = \int_0^1 dx_1 \dots dx_4 \delta (1 - x_1 - \dots - x_4) f(x_1, \dots, x_4)$$

$$f(x_1, \dots, x_4) \equiv \frac{\Gamma(2+\epsilon)}{[-sx_1x_3 - tx_2x_4 - i0]^{2+\epsilon}}.$$

$$I = 2 \Gamma(2+\epsilon) \int_{0}^{1} dy_{1} dy_{2} dy_{3} (1+y_{1}+y_{2}+y_{3})^{2\epsilon} \\ \times \left\{ [-sy_{1}-ty_{2}y_{3}]^{-2-\epsilon} + [-ty_{1}-sy_{2}y_{3}]^{-2-\epsilon} \right\} \\ \frac{\text{Sector decomposition}}{\Theta(y_{1} < y_{2}y_{3}): \quad y_{1} \to y_{1}y_{2}y_{3}} \\ \Theta(y_{2}y_{3} < y_{1} < y_{2}): \quad y_{1} \to y_{1}y_{2} \text{ and } y_{3} \to y_{3}y_{1} \\ \Theta(y_{2} < y_{1}): \quad y_{2} \to y_{2}y_{1}}$$

 $I = I_1 + I_2 + I_3$ $I_1 = 2 \Gamma(2 + \epsilon) \int_0^1 dy_1 dy_2 dy_3 \left(1 + y_1 y_2 y_3 + y_2 + y_3\right)^{2\epsilon}$ $\times \left\{ [-sy_1 - t]^{-2-\epsilon} + [-ty_1 - s]^{-2-\epsilon} \right\} (y_2 y_3)^{-1-\epsilon}$

$$I_2 = 2\Gamma(2+\epsilon) \int_0^1 dy_1 dy_2 dy_3 \left(1+y_1 y_2+y_2+y_3 y_1\right)^{2\epsilon} \\ \times \left\{ \left[-s-t y_3\right]^{-2-\epsilon} + \left[-t-s y_3\right]^{-2-\epsilon} \right\} (y_2 y_1)^{-1-\epsilon} \right\}$$

$$I_{3} = 2\Gamma(2+\epsilon) \int_{0}^{1} dy_{1} dy_{2} dy_{3} \left(1+y_{1}+y_{2} y_{1}+y_{3}\right)^{2\epsilon} \\ \times \left\{\left[-s-t y_{2} y_{3}\right]^{-2-\epsilon}+\left[-t-s y_{2} y_{3}\right]^{-2-\epsilon}\right\} y_{1}^{-1-\epsilon}$$

$$I = 2\Gamma(2+\epsilon) \int_0^1 dy_1 dy_2 dy_3 \left(1+y_1+y_2+y_3\right)^{2\epsilon} \\ \times \left\{ \left[-sy_1 - ty_2 y_3\right]^{-2-\epsilon} + \left[-ty_1 - sy_2 y_3\right]^{-2-\epsilon} \right\}$$

$$y_1
ightarrow rac{y_1y_2y_3}{1-y_1+y_2y_3}$$

$$I = 2\Gamma(2+\epsilon) \int_{0}^{1} dy_{1} dy_{2} dy_{3} (y_{2}y_{3})^{-1-\epsilon} (1-y_{1}+y_{2}y_{3})^{-\epsilon} [y_{1}y_{2}y_{3}+(1+y_{2}+y_{3})(1-y_{1}+y_{2}y_{3})]^{2\epsilon} \\ \times \left\{ [-sy_{1}-t(1-y_{1})-ty_{2}y_{3}]^{-2-\epsilon} + [-ty_{1}-s(1-y_{1})-sy_{2}y_{3}]^{-2-\epsilon} \right\}$$
(3.7)

Other typical examples

$$x \mapsto A \equiv x \to \frac{xA}{1-x+A}$$

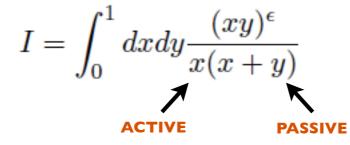
$$I_2 = \int_0^1 dx \, dy \, dz \, \frac{(xyz)^{\epsilon}}{(x+yz)^N} \qquad \qquad x \mapsto yz \qquad I_2 = \int_0^1 \frac{dx \, dy \, dz}{(yz)^{N-1-2\epsilon}} \frac{(1-x+yz)^{N-2-\epsilon} x^{\epsilon}}{(1+yz)^{N-1}}$$

$$I_{3} = \int_{0}^{1} dx \, dy \, dz \frac{(xyz)^{\epsilon}}{(x+y+z)^{3}} \qquad y \mapsto x \ , \ z \mapsto x \ I_{3} = \int_{0}^{1} \frac{dx \, dy \, dz}{x^{1-3\epsilon}} \frac{(1+x)^{2}(1-y+x)(1-z+x)(yz)^{\epsilon}}{((1+x)^{2}-zy)^{3}}$$

$$\begin{split} I_4 &= \int_0^1 dx \, dy \, dz \, dw \frac{(xyzw)^{\epsilon}}{(x+y(z+w))^2} & x \mapsto y \ , \ z \mapsto x \ , \ w \mapsto x \\ I_4 &= \int_0^1 \frac{dx \, dy \, dz \, dw}{y^{2-2\epsilon} x^{1-3\epsilon}} \frac{(zw)^{\epsilon} (1+y)(1+x)^2 (1-w+x)^{1-\epsilon} (1-z+x)^{1-\epsilon} (1-x+y)^{-\epsilon}}{\left[(x+1)^2 + (x+1) \left(x-y\right) (z+w) + (-1+2y-2x) zw\right]^3} \end{split}$$

$$\begin{split} I_5 &= \int_0^1 dx \, dy \, dz \, dw \frac{(xyzw)^{\epsilon}}{(x+y+zw)^3} & x \mapsto zw \ , \ y \mapsto zw \\ I_5 &= \int_0^1 dx \, dy \, dz \, dw \frac{(xy)^{\epsilon}}{z^{1-3\epsilon}w^{1-3\epsilon}} \frac{(1+zw)^2(1-x+zw)^{1-\epsilon}(1-y+zw)^{1-\epsilon}}{(1-xy+2zw+z^2w^2)^3} \end{split}$$

Active and passive singularities



$$I = \int_0^1 dx dy x^{-1+\epsilon} y^{-1+2\epsilon} (1-x+y)^{-\epsilon} \qquad \qquad I = \int_0^1 dx dy \frac{y^{-\epsilon}}{x^{1+\epsilon} (1-y+x)^{1+\epsilon}}$$

MAP THE ACTIVE: OK

MAP THE PASSIVE: NOT OK

More complicated example with active/passive singularities

$$\begin{split} I &= \int_0^1 dx dy dz \frac{(xyz)^\epsilon}{xy(xy+z)} \\ &\quad x \to \frac{xz}{1-x+zx} \\ I &= \int_0^1 dx dy dz \frac{(xy^2z)^\epsilon (1-x+zx)^{-\epsilon}}{xyz(x(y+z)+(1-x))} \\ &\quad y \to \frac{y(1-x)}{1-y+(1-x)y} \qquad z \to \frac{z(1-x)}{1-z+(1-x)z} \end{split}$$

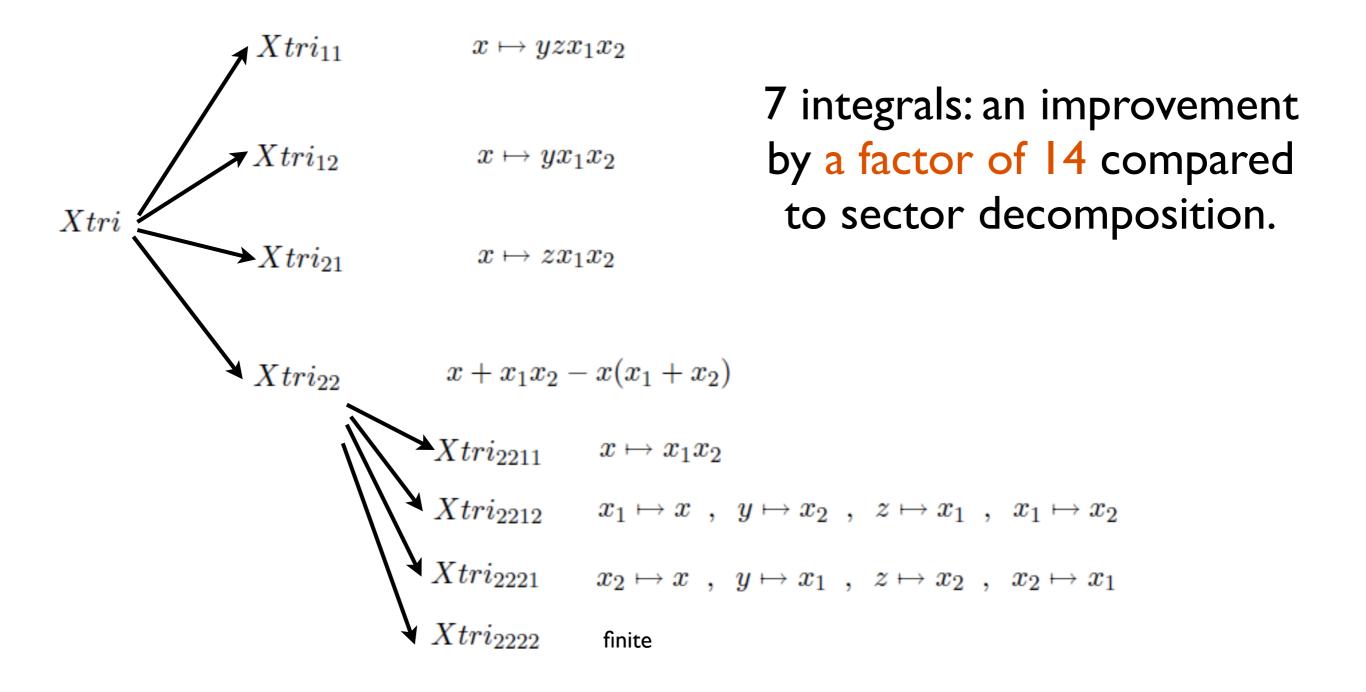
$$I = \int_0^1 dx dy dz \frac{(xy)^{-1+\epsilon}((1-x)z)^{-1+2\epsilon}}{(1-xy)^{\epsilon}(1-xz)^{\epsilon}(1-x^2yz)}$$

Applications $2 \rightarrow 1$ in processes

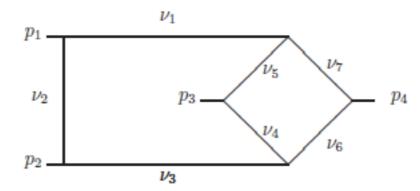
Applications in double virtual: the non-planar two-loop triangle

$$\begin{aligned} & \begin{array}{c} Xtri = 4^{2+2\epsilon} \int_{0}^{1} dx_{1} dx_{2} dz dy dx \frac{zy^{1+\epsilon}(1-y)^{-1-\epsilon}(1-z)^{-1-\epsilon}}{[x(1-x)+yz(x-x_{1})(x-x_{2})]^{2+2\epsilon}} \\ & \text{singularities at } x = 0 \text{ or } x = 1 \end{aligned} \\ & \begin{array}{c} 1:k_{1} \\ 2:k_{1}+p_{1} \\ 3:k_{2} \\ 4:k_{2}+p_{2} \\ 5:k_{1}+k_{2} \\ 6:k_{1}+k_{2}+p_{1}+p_{2} \end{array} \\ & Xtri = 4^{2+2\epsilon} \int_{0}^{1} dx_{1} dx_{2} dz dy dx \frac{zy^{1+\epsilon}(1-y)^{-1-\epsilon}(1-z)^{-1-\epsilon}}{[x(2-x)+yz(2x_{1}-x)(2x_{2}-x)]^{2+2\epsilon}} \end{aligned} \\ & y \rightarrow y/2 \qquad z \rightarrow z/2 \qquad Xtri_{11} = 2^{6+9\epsilon} \int_{0}^{1} dx_{1} dx_{2} dz dy dx \frac{zy^{1+\epsilon}(2-y)^{-1-\epsilon}(2-z)^{-1-\epsilon}}{[4x(2-x)+yz(2x_{1}-x)(2x_{2}-x)]^{2+2\epsilon}} \end{aligned} \\ & y \rightarrow y/2 \qquad z \rightarrow 1-z/2 \qquad Xtri_{12} = 2^{6+9\epsilon} \int_{0}^{1} dx_{1} dx_{2} dz dy dx \frac{(2-z)y^{1+\epsilon}(2-y)^{-1-\epsilon}(2-z)^{-1-\epsilon}}{[4x(2-x)+y(2-z)(2x_{1}-x)(2x_{2}-x)]^{2+2\epsilon}} \end{aligned} \\ & y \rightarrow 1-y/2 \qquad z \rightarrow z/2 \qquad Xtri_{21} = 2^{6+9\epsilon} \int_{0}^{1} dx_{1} dx_{2} dz dy dx \frac{z(2-y)^{1+\epsilon}(2-y)^{-1-\epsilon}(2-z)^{-1-\epsilon}}{[4x(2-x)+y(2-z)(2x_{1}-x)(2x_{2}-x)]^{2+2\epsilon}} \end{aligned}$$

Applications in double virtual: the non-planar two-loop triangle



Applications in double virtual: The non-planar double box



$$Xbox = C_{\epsilon} \int \frac{dx_1 dx_2 dx_3 dx_4 \delta(1 - x_1 - x_2 - x_3 - x_4) d\tau_1 d\tau_2 \ x_2^{1+\epsilon}}{(x_1 x_3 s + x_2 x_4 t_c + x_1 x_2 Q^2 + x_2 x_3 Q_t^2 + 0 x_1 x_4 (s + t + u))^{3+2\epsilon}}$$

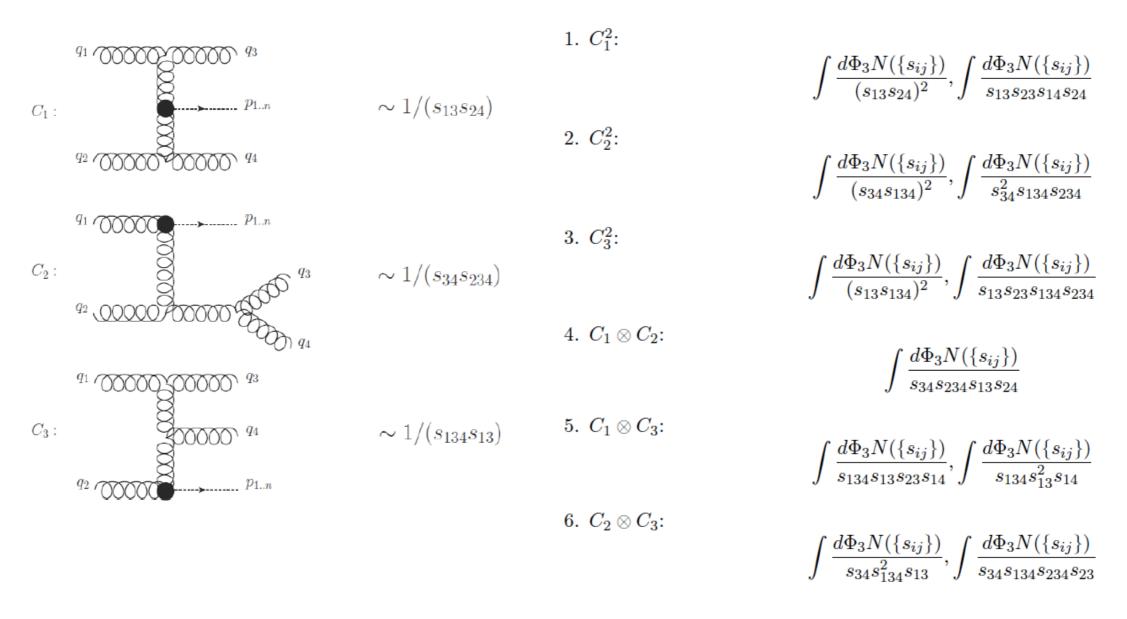
where

$$Q_t^2 = (1 - \tau_1)(1 - \tau_2)s, \quad Q^2 = \tau_1\tau_2s, \quad t_c = \tau_2(1 - \tau_1)u + (1 - \tau_2)\tau_1t$$

Note: this is a new representation inspired by Wilson loop considerations (see paper by Anastasiou and Banfi to be published soon)

More complicated structure resulting at 19 integrals This is an improvement with a factor of 5 (at least) compared to sector decomposition Applications in double real: Higgs revisited

Higgs + 2 gluons topologies

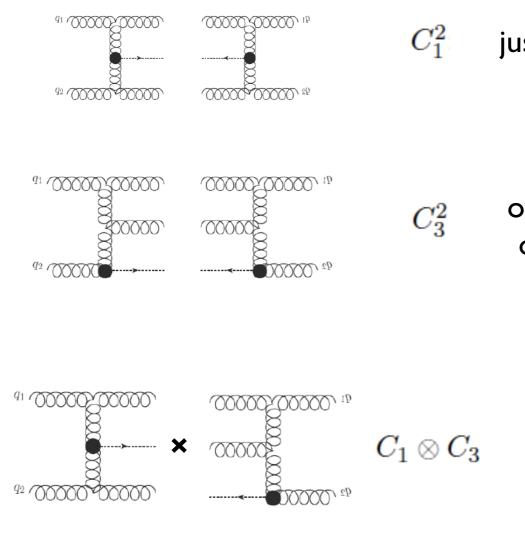


Original calculation by Anastasiou, Melnikov, Petriello hep-ph/0501130

Applications in double real: Higgs revisited

The singularity structure of each individual integral depends strongly on the parametrization chosen.

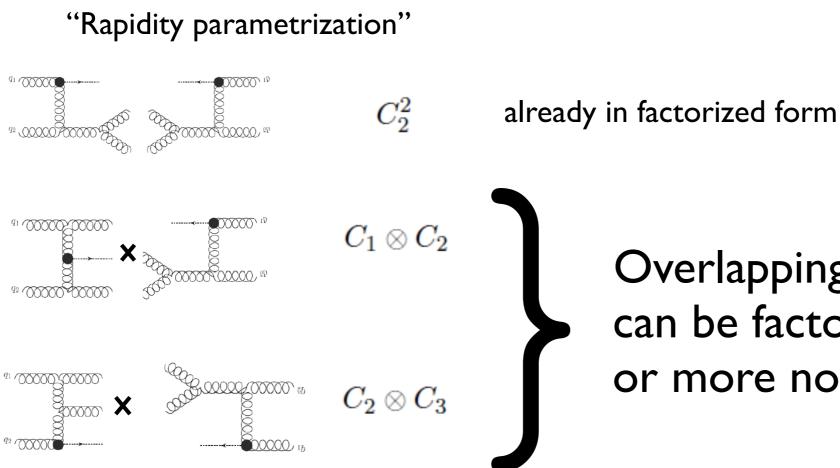
"Energy parametrization"



just partial fractioning factorizes it

overlapping singularities that can be factored out with one or more non-linear mappings

Line and overlapping singularities: the line singularity has to be treated first, along the lines of [Anastasiou, Melnikov, Petriello hep-ph/0501130]. Applications in double real: Higgs revisited



Overlapping singularities that can be factored out with one or more non-linear mappings

Outlook

- A new approach to factorize overlapping singularities using non-linear mappings is pursued.
- As a result there is vast improvement with respect to previously used sector decomposition.
- This inspires great optimism for better NNLO calculations.
- Higgs production is revisited.
- More processes to come!