Effective approaches to meson structure

TANJA BRANZ Institut für Theoretische Physik Universität Tübingen

Outline

Part I: Effective Lagrangian approach

- **1** Introductory remarks: Charmonia & X, Y, Z mesons
- **②** Hidden charm mesons as hadronic molecules:
 - $Y(3940) = D^* \overline{D}^*$ and $Z^+(4430) = D^* \overline{D}_1$
- 3 Theory
 - Effective field theoretical approach for composite objects

Selected radiative and hidden-charm decays

Part II: AdS/CFT approach

- Introduction of the method
- Computation of meson mass spectrum

Part I Effective Lagrangian Approach

Together with:

Thomas Gutsche, Valery Lyubovitskij (Tübingen) Mikhail A. Ivanov (Dubna), Jürgen G. Körner (Mainz)

cc meson spectrum

Charmonium mesons

- mass spectrum predicted by potential models and lattice calculations
- good agreement with data below DD threshold
- well defined basis to study meson structure

Fig. taken from Godfrey, Olsen, Annu. Rev. Nucl. Sci. 58, 51 (08)

Charmonium production mechanisms

B-factories BELLE, BaBar and CDF built to study *B*-physics ⇒ but also excellent environment for charmonium spectroscopy **Charmonium production:**

Many new charmonium-like X, Y and Z mesons

State	$M \ ({\rm MeV})$	Γ (MeV)	J^{PC}	Decay Modes	Production Modes	Observed by:
X(3872)	3871.4 ± 0.6	< 2.3	1^{++}	$\pi^+\pi^-J/\psi, \gamma J/\psi$	$B \rightarrow KX(3872), p\bar{p}$	Belle, CDF, D0, BaBar
X(3875)	3875.5 ± 1.5	$3.0^{+2.1}_{-1.7}$?	$D^0 \bar{D^0} \pi^0(\gamma)$	$B \to KX(3875)$	Belle, BaBar
Z(3940)	3929 ± 5	29 ± 10	2^{++}	$D\bar{D}$	$\gamma\gamma \to Z(3940)$	Belle
X(3940)	3942 ± 9	37 ± 17	J^{P+}	$D\bar{D^*}$	$e^+e^- \rightarrow J/\psi X(3940)$	Belle
Y(3940)	3943 ± 17	87 ± 34	J^{P+}	$\omega J/\psi$	$B \rightarrow KY(3940)$	Belle, BaBar
Y(4008)	4008^{+82}_{-49}	226^{+97}_{-80}	1	$\pi^+\pi^-J/\psi$	$e^+e^-(ISR)$	Belle
Y(4140)	4130 ± 4.1	$11.7^{+12.0}_{-8.7}$	J^{P+}	$J/\psi\phi$	$B^+ \rightarrow K^+ Y(4140)$	CDF
X(4160)	4156 ± 29	139^{+113}_{-65}	J^{P+}	$D^*\bar{D^*}$	$e^+e^- \to J/\psi X(4160)$	Belle
Y(4260)	4264 ± 12	83 ± 22	1	$\pi^+\pi^-J/\psi$	$e^+e^-(ISR)$	BaBar, CLEO, Belle
Y(4350)	4361 ± 13	74 ± 18	1	$\pi^+\pi^-\psi'$	$e^+e^-(ISR)$	BaBar, Belle
$\mathbf{Z}^{\pm}(4430)$	4433 ± 5	45^{+35}_{-18}	?	$\pi^{\pm}\psi'$	$B \to K Z^{\pm}(4430)$	Belle
Y(4660)	4664 ± 12	48 ± 15	1	$\pi^+\pi^-\psi'$	$e^+e^-(ISR)$	Belle

Table taken from Godfrey, arXiv:0910.3409

Many new charmonium-like X, Y and Z mesons

State	$M \ ({\rm MeV})$	Γ (MeV)	J^{PC}	Decay Modes	Production Modes	Observed by:
X(3872)	3871.4 ± 0.6	< 2.3	1^{++}	$\pi^+\pi^-J/\psi, \gamma J/\psi$	$B \rightarrow KX(3872), p\bar{p}$	Belle, CDF, D0, BaBar
X(3875)	3875.5 ± 1.5	$3.0^{+2.1}_{-1.7}$?	$D^0 \bar{D^0} \pi^0(\gamma)$	$B \rightarrow KX(3875)$	Belle, BaBar
Z(3940)	3929 ± 5	29 ± 10	2^{++}	$D\bar{D}$	$\gamma\gamma \to Z(3940)$	Belle
X(3940)	3942 ± 9	37 ± 17	J^{P+}	$D\bar{D^*}$	$e^+e^- \rightarrow J/\psi X(3940)$	Belle
Y(3940)	3943 ± 17	87 ± 34	J^{P+}	$\omega J/\psi$	$B \rightarrow KY(3940)$	Belle, BaBar
Y(4008)	4008^{+82}_{-49}	226^{+97}_{-80}	1	$\pi^+\pi^-J/\psi$	$e^+e^-(ISR)$	Belle
Y(4140)	4130 ± 4.1	$11.7^{+12.0}_{-8.7}$	J^{P+}	$J/\psi\phi$	$B^+ \to K^+ Y(4140)$	CDF
X(4160)	4156 ± 29	139^{+113}_{-65}	J^{P+}	$D^*\bar{D^*}$	$e^+e^- \rightarrow J/\psi X(4160)$	Belle
Y(4260)	4264 ± 12	83 ± 22	1	$\pi^+\pi^-J/\psi$	$e^+e^-(ISR)$	BaBar, CLEO, Belle
Y(4350)	4361 ± 13	74 ± 18	1	$\pi^+\pi^-\psi'$	$e^+e^-(ISR)$	BaBar, Belle
$\mathbf{Z}^{\pm}(4430)$	4433 ± 5	45^{+35}_{-18}	?	$\pi^{\pm}\psi'$	$B \rightarrow KZ^{\pm}(4430)$	Belle
Y(4660)	4664 ± 12	48 ± 15	1	$\pi^+\pi^-\psi'$	$e^+e^-(ISR)$	Belle

Table taken from Godfrey, arXiv:0910.3409

overpopulation of states

untypical decay/production properties, ...

Y(3940)

Y(3940) BELLE/BaBar (2005) • $B \rightarrow Y(3940)K$ with Y(3940) $\rightarrow J/\psi\omega$ • $m_{Y(3940)} = 3914.6^{+3.8}_{-3.4}(\text{stat})\pm 2(\text{syst}) \text{ MeV},$ $\Gamma_{Y(3940)} = 34^{+12}_{-8}(\text{stat})\pm 5(\text{syst}) \text{ MeV}$ • resonance X(3915) in $\gamma\gamma \rightarrow \omega J/\psi$ BELLE(09) $\rightarrow Y(3940)$?

Z⁺(4430)

First detection of charged hidden-charm state

Z⁺(4430) BELLE (2008)

- $B \rightarrow Z^+(4430)K$
- $Z^+(4430) \rightarrow \pi^+ \psi'$, $Z^+(4430) \not\rightarrow \pi^+ \psi$

•
$$m_{Z^+(4430)} = 4443^{+15+19}_{-12-13}$$
 MeV,
 $\Gamma_{Z^+(4430)} = 107^{+86+74}_{-42}$ MeV

• not seen by BaBar but no contradiction.

 \Rightarrow needs confirmation by second experiment.

Further charged charmonium-like states in $B \rightarrow K \pi^+ \chi_{c1}$: Z_1^+ (4050), Z_2^+ (4250) (BELLE (08))

T. Branz (Uni Tübingen)

Y(3940) and $Z^+(4430)$ - meson molecules

- $m_{Y(3940)} = 3914.6 \text{ MeV}, \quad D^* \bar{D}^* \text{-threshold} \approx 4014 \text{ MeV}.$ interpretation as $|Y(3940)\rangle = \frac{1}{\sqrt{2}} (|D^{*+}D^{*-}\rangle + |D^{*0}D^{-*0}\rangle)$ • quantum numbers (first estimate) $J^{PC} = 0^{++}, 2^{++}$
- @ m_{Z⁺(4430)} ≈4430 MeV, D^{*}D
 ₁(2420)-threshold ≈ 4430 MeV.
 interpretation as $|Z^+(4430)\rangle = \frac{1}{\sqrt{2}}(|D^{*+}\overline{D_1^0}\rangle + |D_1^+\overline{D^{*0}}\rangle)$ G-parity positive state, I^G(J^{PC}) = 1⁺(0⁻⁻, 1⁻⁻).

Binding of meson-meson systems

Y(3940)

• meson exchange potentials (Tornqvist (94), Liu *et al.* (09)) $D^*\overline{D}^*$ bound by π exchange,

• dynamically generated (Oset *et al.* (09)) Y(3940) is mostly a $D^*\bar{D}^*$ bound state with $J^{PC} = 0^{++}$

Binding of meson-meson systems

Y(3940)

• meson exchange potentials (Tornqvist (94), Liu *et al.* (09)) $D^*\overline{D}^*$ bound by π exchange,

• dynamically generated (Oset *et al.* (09)) Y(3940) is mostly a $D^*\bar{D}^*$ bound state with $J^{PC} = 0^{++}$

Z⁺(4430)

- meson exchange potentials (Liu *et al.* (08)) $D^*\overline{D}_1$ can form bound state by π, σ exchange $(J^P = 0^-)$
- OPE (Close et al. (10)) sufficient for $D^*\bar{D}_1$ binding with $J^P=1^-$
- QCD sum rules (Lee et al. (08), Nielsen et al. (09)) $D^* \overline{D}_1$ molecular structure with $J^P = 0^-$.

Effective Lagrangian approach

Hadronic molecule H as a bound state of mesons M_1 and M_2

• Aim: calculation of decay properties

Effective Lagrangian approach

Hadronic molecule H as a bound state of mesons M_1 and M_2

• Aim: calculation of decay properties

Decays of hadronic molecules:

Decay proceeds via constituent mesons $M_1 \& M_2$

Effective Lagrangian approach

Hadronic molecule H as a bound state of mesons M_1 and M_2

• Aim: calculation of decay properties

Decays of hadronic molecules: Decay proceeds via constituent mesons $M_1 \& M_2$

- $\textbf{0} \ \text{finite size of hadronic molecule} \rightarrow \textbf{form factors}$
- 4 determination of coupling constant gH

Theoretical framework

Interaction of H with M_1 and M_2 characterized by effective Lagrangian:

$$\mathcal{L}_{H}(x) = g_{H}H(x) \int dy \, \Phi(y^{2}) M_{1}\left(x - \frac{y}{2}\right) M_{2}\left(x + \frac{y}{2}\right)$$

Theoretical framework

Interaction of H with M_1 and M_2 characterized by effective Lagrangian:

$$\mathcal{L}_{H}(x) = g_{H}H(x) \int dy \, \Phi(y^{2}) M_{1}\left(x - \frac{y}{2}\right) M_{2}\left(x + \frac{y}{2}\right)$$

• Vertex function $\Phi(y^2)$ allows for finite size effects (distribution of constituents)

$$\Phi(y^2) = \int \frac{d^4k}{(2\pi)^4} e^{-iky} \widetilde{\Phi}(-k^2)$$

Theoretical framework

Interaction of H with M_1 and M_2 characterized by effective Lagrangian:

$$\mathcal{L}_{H}(x) = g_{H}H(x) \int dy \, \Phi(y^{2}) M_{1}\left(x - \frac{y}{2}\right) M_{2}\left(x + \frac{y}{2}\right)$$

Vertex function Φ(y²) allows for finite size effects (distribution of constituents)

$$\Phi(y^2) = \int \frac{d^4k}{(2\pi)^4} e^{-iky} \widetilde{\Phi}(-k^2)$$

Gaussian form in momentum space: $\Phi(k_E^2) = \exp(-k_E^2/\Lambda^2)$ Size parameter $\Lambda \approx$ few GeV Local limit (pointlike interaction): $\Lambda \rightarrow \infty$

Compositeness/Weinberg condition

2 determination of the coupling constant g_H

Description of hadronic bound states based on compositeness condition¹

$$Z_H = 1 - g_H^2 \tilde{\Pi}'(p^2) \big|_{p^2 = m_H^2} = 0$$
.

with the mass operator $g_H^2 \tilde{\Pi}(p^2)$ $H \xrightarrow{p}{g_H}$

$$Z_{H} = \left| \left\langle H^{bare} \right| H^{dressed} \right\rangle \right|^{2} = 0$$

Coupling g_H finite and fixed self-consistently

¹Weinberg, PR 130 (1963) 776; Salam, Nuov. Cim. 25 (1962) 224;...

T. Branz (Uni Tübingen)

meson structure

Radiative decays $Y(D^*\bar{D}^*) \rightarrow \gamma\gamma$

 $\text{minimal substitution } H^{\pm} \rightarrow (\partial^{\mu} \mp i e A^{\mu}) H^{\pm} \\
 \mathcal{L}_{em} = e A_{\alpha} \left(g^{\alpha \nu} D_{\mu}^{*-} i \partial^{\mu} D_{\nu}^{*+} + H.c \right) + e^{2} D_{\mu}^{*-} D_{\nu}^{*+} \left(A^{\mu} A^{\nu} - g^{\mu \nu} A^{\alpha} A_{\alpha} \right).$

mm 7

 $\frac{m}{q_2}$

Radiative decays $Y(D^*\bar{D}^*) \rightarrow \gamma\gamma$

• minimal substitution $H^{\pm} \rightarrow (\partial^{\mu} \mp i e A^{\mu}) H^{\pm}$ $\mathcal{L}_{em} = e A_{\alpha} \left(g^{\alpha \nu} D_{\mu}^{*-} i \overset{\leftrightarrow}{\partial^{\mu}} D_{\nu}^{*+} + H.c \right) + e^{2} D_{\mu}^{*-} D_{\nu}^{*+} \left(A^{\mu} A^{\nu} - g^{\mu \nu} A^{\alpha} A_{\alpha} \right).$

2 gauging the strong interaction Lagrangian with $H^{\pm}(y) \rightarrow e^{\pm iel(y,x,P)} H^{\pm}(y)$, where $I(x,y,P) = \int_{y}^{x} dz_{\mu} A^{\mu}(z)$ (Terning (1991)).

Radiative decays $Y(D^*\bar{D}^*) \rightarrow \gamma\gamma$

 $\begin{aligned} & \bullet \quad \text{minimal substitution } H^{\pm} \rightarrow (\partial^{\mu} \mp i e A^{\mu}) H^{\pm} \\ & \mathcal{L}_{\text{em}} = e A_{\alpha} \left(g^{\alpha \nu} D_{\mu}^{*-} i \overset{\leftrightarrow}{\partial^{\mu}} D_{\nu}^{*+} + \text{H.c} \right) + e^{2} D_{\mu}^{*-} D_{\nu}^{*+} \left(A^{\mu} A^{\nu} - g^{\mu \nu} A^{\alpha} A_{\alpha} \right). \end{aligned}$

2 gauging the strong interaction Lagrangian with $H^{\pm}(y) \rightarrow e^{\pm i e l(y,x,P)} H^{\pm}(y)$, where $I(x,y,P) = \int_{y}^{x} dz_{\mu} A^{\mu}(z)$ (Terning (1991)).

- two additional diagrams are generated
- necessary to guarantee full gauge invariance.

Results $Y(3940) \rightarrow \gamma \gamma$

$$\mathbf{Y}(3940) = \mathbf{D}^* \mathbf{\bar{D}}^* \qquad \qquad \Gamma_{Y(3940)} = 34^{+12}_{-8}(stat) \pm 5(syst) \ MeV$$

• $\Gamma_{Y \to \gamma \gamma}$	effective Lagrangian approach [1]	0.33 keV
	coupled channels [2]	0.09 keV

• resonance X(3915) in $\gamma\gamma \rightarrow J/\psi\omega$ (BELLE (09)),

 \rightarrow X(3915) candidate for (Y(3940)?)

 $\Gamma(X(3915) \rightarrow \gamma \gamma) \mathcal{B}(X(3915) \rightarrow \omega J/\psi) = 61 \pm 17 \pm 8 \text{ eV}$:

 $\Gamma(X(3915) \rightarrow \gamma \gamma) \approx 0.4$ keV same order of magnitude

TB, T. Gutsche, V.E. Lyubovitskij, Phys. Rev. D 80, 054019 (2009)
 TB, R. Molina, E. Oset, arXiv:1010.0587.

T. Branz (Uni Tübingen)

meson structure

Hidden-charm decay $Y \rightarrow J/\psi \omega$

Coupling to final states:

HHChPT Lagrangian (Wise (1992), Colangelo (2004)):

 $\mathcal{L}_{D^*D^*J_{\psi}} = ig_{D^*D^*J_{\psi}} J_{\psi}^{\mu} \left(D_{\mu i}^{*\dagger} \stackrel{\leftrightarrow}{\partial}_{\nu} D_{i}^{*\nu} + D_{\nu i}^{*\dagger} \stackrel{\leftrightarrow}{\partial}_{\nu} D_{\mu i}^{*} - D_{i}^{*\dagger\nu} \stackrel{\leftrightarrow}{\partial}_{\mu} D_{\nu i}^{*} \right),$ $\mathcal{L}_{D^*D^*V} = ig_{D^*D^*V} V_{ij}^{\mu} D_{\nu i}^{*\dagger} \stackrel{\leftrightarrow}{\partial}_{\mu} D_{j}^{*\nu} + 4if_{D^*D^*V} (\partial^{\mu} V_{ij}^{\nu} - \partial^{\nu} V_{ij}^{\mu}) D_{\mu i}^{*} D_{j}^{*\dagger\nu}$ $V_{ii} = \text{diag} \{ \omega / \sqrt{2}, \omega / \sqrt{2}, \phi \}, D^* = (D^{*0}, D^{*+}, D_{e}^{*+})$

 $g_{D^*D^*J/\psi} \approx 3.69, \ g_{D^*D^*V} \approx 4.61, \ f_{D^*D^*V} \approx 8.00$

Results $Y(3940) \rightarrow J/\psi\omega$

Y(3940)

$\Gamma_{V(2040)} = 34^{+12}(stat) + 5(syst) MeV$	ì
$Y(3940) = 34_8 (3121) \pm 3(3931) 1016 V$	ł

• $\Gamma_{Y \to J/\psi\omega}$	Molina, Oset (09)	(dyn. generated)	1.52 MeV
	our result	(HM)	5.47 MeV

 B(B⁺ → Y(3940)K⁺)B(Y(3940) → J/ψω) = (7.1±1.3±3.2) · 10⁻⁵ leads to: Γ_{Y→J/ψω} of a few MeV at least order of magnitude higher than cc̄ estimates (keV scale)

TB, T. Gutsche, V.E. Lyubovitskij, Phys. Rev. D 80, 054019 (2009)

T. Branz (Uni Tübingen)

meson structure

Hidden-charm decays $Z^+ \rightarrow \pi^+ \psi^{(\prime)}$

Couplings:

- $g_{D_1D^*\pi}=0.49~{
 m GeV^{-1}}$ fixed by $\Gamma(D_1 \rightarrow D^{*+}\pi^-) \approx 20~{
 m MeV}$
- $g_{D^*D^*J/\psi} = 8$, $g_{D^*D^*\psi'}/g_{D^*D^*\psi} = 1.67$ (HHChPT)
- $g_{D^*D\pi} = 17.9$ from corresponding decay
- $r_1 = g_{D_1 D \psi} / g_{D_1 D^* \pi} \approx 0.4 \pm 0.2$ from coupled channels
- $r_2 = g_{D_1 D \psi'}/g_{D_1 D \psi} \approx 2 \pm 1$ (³ P_0 quark model).

Results $Z^+ \rightarrow \pi^+ \psi^{(\prime)}$

$\mathsf{Z}^{+}(4430) \qquad \qquad \Gamma_{Z^{+}(4430)} = 107^{+86+74}_{-43-56} \ MeV$

- $Z^+ \to \pi^+ \psi'$, $Z^+ \not\to \pi^+ \psi \Rightarrow \mathcal{B} \frac{Z^+ \to \pi^+ \psi'}{Z^+ \to \pi^+ \psi} >> 1$
- $\mathcal{B}(B \to Z^+ K) \mathcal{B}(Z^+ \to \psi' \pi^+) = (4.1 \pm 1.0 \pm 1.4) \cdot 10^{-5} \text{ (BELLE(09))}$ $\Rightarrow \Gamma(Z^+ \to \pi^+ \psi') > 1 \text{ MeV}.$

Results $Z^+ \rightarrow \pi^+ \psi^{(\prime)}$

$$\mathsf{Z}^+(4430) \qquad \qquad \mathsf{\Gamma}_{Z^+(4430)} = 107^{+86+74}_{-43-56} \ MeV$$

- $Z^+ \to \pi^+ \psi', \quad Z^+ \not\to \pi^+ \psi \quad \Rightarrow \quad \mathcal{B} \frac{Z^+ \to \pi^+ \psi'}{Z^+ \to \pi^+ \psi'} >> 1$
- $\mathcal{B}(B \to Z^+ K)\mathcal{B}(Z^+ \to \psi' \pi^+) = (4.1 \pm 1.0 \pm 1.4) \cdot 10^{-5} \text{ (BELLE(09))}$ $\Rightarrow \Gamma(Z^+ \to \pi^+ \psi') > 1 \text{ MeV.}$

Our result

$r_1 = \frac{\mathbf{g}_{\mathbf{D}_1 \mathbf{D}\psi}}{\mathbf{g}_{\mathbf{D}_1 \mathbf{D}\psi}}$	$\Gamma_{Z \to \pi \psi'}$	[MeV]	$R = \Gamma_{Z \to \pi \psi'} / \Gamma_{Z \to \pi \psi}$	
$r_1 = g_{D_1 D^* \pi}$	$r_2 = 2$	$r_2 = 3$	$r_2 = 2$	$r_2 = 3$
0.4	2.9	6.9	3.6	8.6
0.6	6.9	16.2	3.0	7.0

$$r_2 = \frac{g_{D_1 D\psi'}}{g_{D_1 D\psi}} = 1 - 3$$

TB, T. Gutsche, V.E. Lyubovitskij, Phys.Rev. D 82, 054025 (2010)

T. Branz (Uni Tübingen)

meson structure

Part II AdS/CFT

Together with:

Thomas Gutsche, Valery Lyubovitskij (Tübingen) Ivan Schmidt, Alfredo Vega (Valparaiso, Chile)

Holographic approach to hadronic matter

Light front holography approach based on $\mathsf{AdS}/\mathsf{CFT}$ correspondence

- AdS: Anti de Sitter space ('Strings')
- CFT: Conformal field theory ('hadronic world'), (here conformal=scale invariant)

Holographic approach to hadronic matter

Light front holography approach based on $\mathsf{AdS}/\mathsf{CFT}$ correspondence

- AdS: Anti de Sitter space ('Strings')
- CFT: Conformal field theory ('hadronic world'), (here conformal=scale invariant)
 - application of string theory to physical observables.
 - semi classical approximation to QCD

Holographic approach to hadronic matter

Light front holography approach based on $\mathsf{AdS}/\mathsf{CFT}$ correspondence

- AdS: Anti de Sitter space ('Strings')
- CFT: Conformal field theory ('hadronic world'), (here conformal=scale invariant)
 - application of string theory to physical observables.
 - semi classical approximation to QCD

Aim of the model:

- Description of hadrons in terms of quarks and gluons
- Computation of hadron properties
- Mass spectrum
- Decay constants and widths

AdS/CFT correspondence

AdS/CFT correspondence

String-Theory in Anti-de-Sitter space (AdS)

5 dimensions

(4 space-time coordinates x, plus one holographic variable z)

String mode $\Phi(z)$ holographic variable z

AdS/CFT correspondence

String-Theory in Anti-de-Sitter space (AdS)

5 dimensions

(4 space-time coordinates x, plus one holographic variable z)

String mode $\Phi(z)$ holographic variable z Conformal Field Theory (CFT) in Physical Space-Time

(3+1) dimensions

(4 space-time coordinates x)

Physical states Light front wave functions $\Psi(\zeta)$ impact variable ζ

 $\zeta = extension$ of hadron

AdS/CFT correspondence

String-Theory in Anti-de-Sitter space (AdS)		Conformal Field Theory (CFT) in Physical Space-Time
5 dimensions (4 space-time coordinates x, plus one holographic variable z)		(3+1) dimensions (4 space-time coordinates x)
String mode $\Phi(z)$ holographic variable z	Matching ⇔	Physical states Light front wave functions $\Psi(\zeta)$ impact variable ζ
		$\zeta =$ extension of hadron

Brodsky, de Teramond, Phys. Rev. D 77, 056007 (2008)

T. Branz (Uni Tübingen)

meson structure

Conformal field theory (CFT)

Why can we use a conformal (scale invariant) theory?

- The strong coupling $\alpha_S(Q^2)$ is **not** scale invariant.
- However, it is assumed that α_S(Q²) becomes big but slowly varying at large distances → conformal window
- existence of an IR fixed point

AdS-Space

AdS_5 -space

5-dim. space with negative curvature and conformal symmetry.

• Metric:
$$ds^2 = \frac{R^2}{z^2} (\eta^{lm} dx_l dx_m - dz^2)$$
,

$$\eta^{\mathit{Im}} = \mathit{diag}(1,-1,-1,-1)$$

R: radius

• invariant with respect to $x \rightarrow \lambda x$ and $z \rightarrow \lambda z$.

 \rightarrow scale transformations in z can be matched to physical space-time.

Action of string

$$S_{\Phi} = \frac{(-1)^{J}}{2} \int d^{4}x dz \sqrt{g} e^{-\phi(z)} \left(\partial_{I} \Phi_{J} \partial_{I} \Phi_{J} - \mu^{2} \Phi_{J} \Phi_{J} \right),$$

J: total spin,

 $\phi(z) = \kappa^2 z^2$: Dilaton field

 Ansatz for string: plain wave along the Poincaré coordinates and profile function in the holographic variable Φ(x, z) = e^{-iPx}Φ(z)

• Equation of motion of string mode:

$$ig(-rac{d^2}{dz^2}-rac{1-4L^2}{4z^2}+U(z)ig)\Phi(z)=\mathcal{M}^2\Phi(z),$$

 $U(z)=\kappa^4z^2+2\kappa^2(J-1)$ due to dilaton field.

Matching procedure

Electromagnetic form factor of the pion in light-front formalism

$$F(Q^{2}) = 2\pi \int_{0}^{1} dx \frac{1-x}{x} \int_{0}^{\infty} d\zeta \zeta J_{0}\left(\zeta Q \sqrt{\frac{1-x}{x}}\right) \widetilde{\rho}(x,\zeta)$$

Bjorken x, $\tilde{\rho}(x,\zeta)$: effective distribution of partons, J_0 Bessel function

Matching procedure

Electromagnetic form factor of the pion in light-front formalism

$$F(Q^{2}) = 2\pi \int_{0}^{1} dx \frac{1-x}{x} \int_{0}^{\infty} d\zeta \zeta J_{0}(\zeta Q \sqrt{\frac{1-x}{x}}) \widetilde{\rho}(x,\zeta)$$

Bjorken x, $\tilde{\rho}(x,\zeta)$: effective distribution of partons, J_0 Bessel function

Corresponding expression for the scalars in AdS

$$F(Q^2) = \int_0^\infty dz \Phi(z) \int_0^1 dx J_0(zQ\sqrt{\frac{1-x}{x}}) \Phi(z)$$

Matching procedure

Electromagnetic form factor of the pion in light-front formalism

$$F(Q^{2}) = 2\pi \int_{0}^{1} dx \frac{1-x}{x} \int_{0}^{\infty} d\zeta \zeta J_{0}(\zeta Q \sqrt{\frac{1-x}{x}}) \widetilde{\rho}(x,\zeta)$$

Bjorken x, $\tilde{\rho}(x,\zeta)$: effective distribution of partons, J₀ Bessel function

Corresponding expression for the scalars in AdS

$$F(Q^2) = \int_0^\infty dz \Phi(z) \int_0^1 dx J_0(zQ\sqrt{\frac{1-x}{x}}) \Phi(z)$$

comparing both expressions:

 $z = \zeta \Rightarrow$ holographic variable \equiv impact variable

 $\widetilde{\rho}(x,\zeta) = \frac{x}{1-x} \frac{\left|\Phi(\zeta)\right|^2}{2\pi\zeta}$ Brodsky, de Teramond, Phys. Rev. D 77, 056007 (2008) T. Branz (Uni Tübingen) October 28, 2010 26 / 31

meson structure

AdS/CFT

Matching procedure - here Mesons

 $\widetilde{\rho}(x,\zeta) = \frac{x}{1-x} \frac{\left|\Phi(\zeta)\right|^2}{2\pi\zeta}$, density for two parton system: $\widetilde{\rho}_{n=2}(x,\zeta) = \frac{\left|\widetilde{\Psi}(x,\zeta)\right|^2}{(1-x)^2}$

The hadron wave function characterized by the string mode:

 $|\Psi(x,\zeta)|^2 = x(1-x)\frac{|\Phi(\zeta)|^2}{2\pi\zeta}$

• String mode $\Phi(z)$ can be directly mapped to the LFWF $\Psi(\zeta)$

AdS/CFT

Matching procedure - here Mesons

 $\widetilde{\rho}(x,\zeta) = \frac{x}{1-x} \frac{\left|\Phi(\zeta)\right|^2}{2\pi\zeta}$, density for two parton system: $\widetilde{\rho}_{n=2}(x,\zeta) = \frac{\left|\widetilde{\Psi}(x,\zeta)\right|^2}{(1-x)^2}$

The hadron wave function characterized by the string mode:

 $\left|\Psi(x,\zeta)\right|^2 = x(1-x)\frac{\left|\Phi(\zeta)\right|^2}{2\pi\zeta}$

• String mode $\Phi(z)$ can be directly mapped to the LFWF $\Psi(\zeta)$

•
$$\Psi_{nL}(\zeta) = \frac{C_{nL}}{\sqrt{\pi}} \sqrt{\frac{n!}{(n+L)!}} \sqrt{x(1-x)} \kappa^{L+1} \zeta^L e^{-\frac{1}{2}\kappa^2 \zeta^2} L_n^L(\kappa^2 \zeta^2)$$

n, L radial, orbital quantum numbers, L_n^L : Laguerre polynomials

AdS/CFT

Matching procedure - here Mesons

 $\widetilde{\rho}(x,\zeta) = \frac{x}{1-x} \frac{\left|\Phi(\zeta)\right|^2}{2\pi\zeta}$, density for two parton system: $\widetilde{\rho}_{n=2}(x,\zeta) = \frac{\left|\widetilde{\Psi}(x,\zeta)\right|^2}{(1-x)^2}$

The hadron wave function characterized by the string mode:

 $\left|\Psi(x,\zeta)\right|^2 = x(1-x)\frac{\left|\Phi(\zeta)\right|^2}{2\pi\zeta}$

• String mode $\Phi(z)$ can be directly mapped to the LFWF $\Psi(\zeta)$

•
$$\Psi_{nL}(\zeta) = \frac{C_{nL}}{\sqrt{\pi}} \sqrt{\frac{n!}{(n+L)!}} \sqrt{x(1-x)} \kappa^{L+1} \zeta^L e^{-\frac{1}{2}\kappa^2 \zeta^2} L_n^L(\kappa^2 \zeta^2)$$

n, L radial, orbital quantum numbers, L_n^L : Laguerre polynomials

\Rightarrow Full hadronic wave function is known

 \Rightarrow computation of meson properties and amplitudes

Improvement of the model

Inclusion of • quark masses: $-\frac{d^2}{d\zeta^2} \rightarrow -\frac{d^2}{d\zeta^2} + m_{12}^2$, $m_{12}^2 = \frac{m_1^2}{r} + \frac{m_2^2}{1-r}$ in EoM • one gluon exchange: $-\frac{64\alpha_s^2 m_1 m_2}{9(n+L+1)^2}$, $\alpha_s = 0.33 - 0.79$ flavor dependent • hyperfine splitting: $+\frac{32\pi\alpha_s\beta_S v}{9\mu_{12}}, \quad \beta = -3 (S = 0), 1 (S = 1)$ $\mu_{12} = \frac{2m_1m_2}{m_1+m_2}$, hyperfine-splitting parameter $v = 10^{-4} \text{ GeV}^3$.

Mass spectrum:

$$\mathcal{M}_{nJ}^{2} = 4\kappa^{2}\left(n + \frac{L+J}{2}\right) + \int_{0}^{1} dx \left(\frac{m_{1}^{2}}{x} + \frac{m_{2}^{2}}{1-x}\right) N^{2} e^{-\frac{m_{12}^{2}}{\kappa^{2}}} - \frac{64\alpha_{s}^{2}m_{1}m_{2}}{9(n+L+1)^{2}} + \frac{32\pi\alpha_{s}\beta_{5}v}{9\mu_{12}}.$$

N normalization: $1 = \int_{0}^{1} dx N^{2} e^{-\frac{m_{12}^{2}}{\kappa^{2}}}$
see TB, T. Gutsche, V.E. Lyubovitskij, I. Schmidt, A. Vega, Phys. Rev. D 82, 074022
T. Branz (Uni Tübingen)

meson structure October 28, 2010 28 / 31

meson structure

Meson mass spectrum 1

Meson mass spectrum 2

Conclusions

Part I: Effective Lagrangian approach

- Covariant and gauge invariant QFT approach to hadronic bound states
- Study of decay properties of charmonium-like mesons Y(3940) and $Z^+(4430)$
- Large hidden-charm decay widths can be explained by hadronic molecule interpretation.

Conclusions

Part I: Effective Lagrangian approach

- Covariant and gauge invariant QFT approach to hadronic bound states
- Study of decay properties of charmonium-like mesons Y(3940) and $Z^+(4430)$
- Large hidden-charm decay widths can be explained by hadronic molecule interpretation.

Part II: AdS/CFT

- Holographic model for strongly coupled QCD
- Computation of meson mass spectrum

Decay pattern of Y

Why do the Y not fit in the $c\bar{c}$ scheme?

- $c\bar{c}$ decays to open charm modes dominant
- $(c\bar{c}) \rightarrow J/\psi\omega$ suppressed

open charm decay (OZI-allowed)

hidden charm decay (OZI-suppressed)

Decay pattern of Y

Why do the Y not fit in the $c\bar{c}$ scheme?

- cc decays to open charm modes dominant
- $(c\bar{c}) \rightarrow J/\psi\omega$ suppressed

open charm decay (OZI-allowed) hidden charm decay (OZI-suppressed)

• Experiment: $Y \rightarrow J/\psi \omega > 1$ MeV (1 order of magnitude bigger than all charmonia!)

- radiative $Z^+ \rightarrow \pi^+ \gamma$ only possible for $J^P = 1^-$, (0⁻ forbidden)
- Useful to pin down quantum numbers?

• radiative $Z^+ \rightarrow \pi^+ \gamma$ only possible for $J^P = 1^-$, (0⁻ forbidden)

• Useful to pin down quantum numbers?

 $Z^+(4430) = D^* \overline{D}_1$ $\Gamma_{Z^+(4430)} = 107^{+86+74}_{-43-56} MeV$ $\Gamma_{Z^+
ightarrow \pi^+ \gamma} pprox 0.3 - 0.8 \text{ keV} (\epsilon = 1 - 10 \text{ MeV}) (\text{for } J^P = 1^-)$